
NASA-CR-203451

Automatic Parallelization:

A Comparison of CRAY fpp and KAI KAP/CRAY

Douglas M. Pase
Katherine E. Fletcher

Report RND-90-010, November, 1990

NAS Systems Division

NASA Ames Research Center

Mail Stop 258-6

Moffett Field, CA 94035-1000

Computer Sciences Corporation, NASA Contract NAS 2-12961, Moffett Field, CA
94035-1000

Automatic Parallelization:

A Comparison of CRAY fpp and KAI KAP/CRAY

RND-90-010

Abstract

Douglas M. Pase 1
Katherine E. Fletcher

Computer Sciences Corporation
NASA Ames Research Center

Moffett Field, CA 94035

In this report we examine two existing commercial parallelizing code

restructurers: the CRAY Autotasking2 facility and Kuck and

Associates' KAP/CRAY. In particular we measure their ability to

vectorize and parallelize 25 scientific benchmarks for a CRAY Y-MP

supercomputer. We measure the overall code performance, the

speedup gained by parallelizing codes with these products, and the

overhead used in the parallel execution of each benchmark.

Introduction

Many different ideas about the abilities of parallelizing tools have

been put forward over the years. Some claim that existing programs

are inappropriate for parallel execution because the programming

model used (the Von Neumann model) is inherently sequential, and

such codes should be rewritten using either languages designed to

express parallelism, or sequential languages with parallel extensions

added. Others claim that the codes themselves are adequate, and

that code restructuring tools will be able to provide the needed

parallelism without the expense of relearning programming

techniques and rewriting applications. Still others think that the

problem of parallelizing existing codes is not impossible, but it is too

complex for automatic tools. For them, interactive code restructuring

tools seem to be the way to go.

1 This work was supported by NASA Contract No. NAS2-12961 while the authors
were employed by Computer Sciences Corporation under contract to the
Numerical Aerodynamic Simulation Division at NASA Ames Research Center.
2 UNIX is a trademark of AT&T. CRAY, CRAY Y-MP, CFT77, CF77, Autotasking,
and UNICOS are trademarks of Cray Research, Inc.

In this report we explore the second assertion, that is, that existing
"dusty deck" programs contain sufficient parallelism, at least for
moderately parallel machines, and that it is reasonable to expect a
sophisticated compiler to find it. To examine this question, we
compare the performance of two of the most sophisticated
commercially available code restructurers: CRAY fpp, and Kuck and
Associates KAP/CRAY. Performance is measured on a parallel vector
supercomputerman 8-processor CRAY Research, Inc., Y-MP.

Both tools were designed to be used either as automatic code
restructuring tools, or as "batch mode" restructurers. We make no
attempt to evaluate either tool as a batch tool, that is, we do not
manually improve the code based on what the restructurer was or
was not able to do. We put all benchmarks through one or both
parallelizers and compile the result without further modification.
The only exception to this rule is that we correct errors when the
restructured code fails to execute correctly. All vectorization and
parallelization (CDIR and CMIC) directives originally in the
benchmarks were also removed prior to their use.

Benchmarks were selected from both public sources and sources
private to NAS. The benchmarks reflect as fair a representation of
production codes as possible. The public codes include the Perfect
Benchmark Suite [1], Livermore Loops, and the NAS Kernels.

Hardware Environment

All codes were executed on a CRAY Research, Inc., Y-MP.

Benchmarks were executed in dedicated time, that is, no other

programs were allowed to use the machine while timings were

taking place. In this way no external factors, such as memory bank

conflicts with other programs, were allowed to interfere with

benchmark performance. In addition, all intermediate I/O was sent

to the Solid-State Device (SSD) instead of rotating storage, to reduce

the impact of I/O on performance. Important Y-MP hardware

characteristics are summarized in Table 1. CPU functional units are

described in Table 2, and Y-MP register structure is given in Table 3.

A more complete description of the Y-MP hardware system may be
found in [2].

2

Number of CPUs:

Clock Period:

Instruction Buffer Size:

Memory size:

Memory access time:

Memory bank cycle time:

Number of memory banks:

Number of memory ports/CPU:

Solid-State Device:

8

6.0 ns

512 16-bit parcels

(4 buffers)

128 million 64-bit words

(2 ** 30 bytes)

17 clock periods (107 ns)

5 clock periods (30 ns)
256

4 (2 read, 1 write, 1 I/O)

256 million words

200 Mwords/sec transfer

(4 ports @ 50 Mw/s each)

Table 1 -- Y-MP Hardware Features

Address Functional Units

Scalar Functional Units

Vector Functional Units

Vector/Scalar Functional Units

Add

Multiply

Integer Add
Shift

Logical

Population/Parity/Lead 0

Integer Add
Shift

Logical (2)

Population/Parity

Floating Point Add

Floating Point Multiply

Reciprocal Approximation

Table 2 -- CPU Functional Units

Address (A)

Intermediate Address (B)

Vector (V)

Scalar (S)

Intermediate Scalar (T)

8 32-bit Registers

64 32-bit Registers

8 Registers of 64 elements

each, 64 bits per element

8 64-bit Registers

64 32-bit Registers

Table 3 m Y-MP Register Structure

Software Environment

All benchmarks were written in Fortran for a serial vector

supercomputer. Translation from serial code to parallel code was

performed by CRAY fpp, or Kuck and Associates KAP/CRAY, or both.
Benchmarks were translated from Fortran code with embedded

microtasking directives to Fortran with calls to the CRAY parallel

library by the utility fmp. The resulting code was then compiled by

3

Fortran to Microtasked Fortran

Microtasked Ftn to parallel code

Fortran Compiler

Operating System
Libraries

CRAY fpp
KAP /CRAY

CRAY fmp
CFT77

UNICOS

UNICOS

40.1

1 01

40.1

40.1

5 i.i0

5 I.i0

Table 4 -- Software System Versions

the CRAY cft77 Fortran compiler.

the products are given in Table 4.

The version numbers for each of

The Microtasking parallel environment is supported through special

calls to the CRAY parallel library. Microtasking supports a model of

parallel programming known as Single Program, Multiple Data, or

SPMD. The idea is that when a program is executed each process will

execute the same program, but on different data. Also, each process

executes independently of other processes so they need not take the

same amount of time to execute, nor even execute the same sequence
of instructions.

At the beginning of the execution of a parallel program, slave

processes are created and placed in a "parked" state. While in this

state they accrue "semaphore wait time." Other processes can use

the CPUs while the slaves are in this state, but the slaves have a high

priority when they are unparked and return to the run queue. Once

running, the slaves resume accumulating "user time."

Parallel regions in the program are placed within CMIC$ PARALLEL

and CMIC$ END PARALLEL directives. The directives may be

conditional or unconditional. When a parallel region is entered, the

master process unparks the slave processes, which are returned to

the run queue. Each process then executes the same segment of code

in parallel with the others. If the code segment is a parallel loop,

iterations of the loop are divided into blocks which are distributed

across the available processes. Iteration distribution is done one

iteration per processor. At the end of the parallel region, all slave

processes are parked once again. Table 5 summarizes the overhead

involved with managing the parallel execution for both master and

slave processes in clock periods (CPs), and the rough equivalent in
instructions.

4

MASTER:

Get CPUs

Unpark slaves

Get Iteration

END PARALLEL

50-100 msec (2-4 million instr.)

175 CPs (44 instructions)

25 CPs (6 instructions)

30 CPs (7 instructions)

SLAVE:

Unpark Slaves

Get Iteration

END PARALLEL

Repark Slaves

200 CPs

25 CPs

30 CPs

75 CPs

(50 instructions)

(6 instructions)

(7 instructions)

(19 instructions)

Table 5 -- Parallel System Overhead

CRAY Fpp And KAP/CRAY

The set of compiler options used to compile a program can strongly

affect its performance. In this study we had to trade off aggressive

parallelization against reliability. Aggressive parallelization held

opportunities for greater speedups, but also carried the risk of not

functioning for all of the codes. As a compromise we used the most

aggressive options that also worked for a reasonable majority of the

codes. For fpp we selected -Wd-e46ijt except where noted

otherwise. This selection enables fpp switches 4, 6, i, j, and t, which
mean:

4 Asserts that private array initial values are not needed.

6 Enables automatic inlining of routines that are less than

50 source lines in length, and do not call other routines.

i Enables inner loops with variable iteration counts to be

autotasked, if analysis warrants it.

j Replaces matrix multiplication loops with a library call.

t Enables aggressive loop exchanges to take place.

We used the default command line switch settings for KAP.

default settings were as follows:

The

5

MV=3 Sets the minimum vector length to 3.

MVC=1000 Sets the minimum amount of work in a loop that
KAP will execute in vector-concurrent mode to
1000 iterations. Two-version loops are created if
the loop bounds are unknown. No two-version
loops are generated when mvc=-I is used.

MC=950 Sets the minimum amount of work in a loop that
will be concurrentized. Again, two-version loops
are generated when loop bounds are unknown.

P=0 When a program is concurrentized, it is always
compiled for an unknown number of processors.

DUST=3 Loop re-rolling is enabled, and certain IF/DO code
transformations are performed.

LM=21000 Sets a crude upper limit on the amount of work
KAP will perform in trying to optimize a loop.

0--5 KAP vectorizes any loop where it is legal to do so.
Loop interchanges may be applied, even to
triangular loops, and reductions are recognized.
Enhanced dependence analysis is used, and KAP
attempts to break dependence cycles. Lifetime
analysis of variables is performed. Array
expansion is performed.

UR=16 Loops are unrolled by at most 16 iterations.

UR2=40 Same as UR, but the limit is a measure of "work"
within the loop rather than the number of
iterations.

NOEXPAND Local subroutine inlining is inhibited. Using x=a
allows KAP to inline some subroutines and
functions. Exd=-I restricts inline expansion to
routines which do not contain function or
subroutine references.

Vectorization and parallelization tools rely heavily on techniques for
code analysis, primarily dependence and loop analysis, and on code

6

transformations. Loop analysis classifies the type of loop and the
existence of dependence cycles between statements. This
information is used in determining which loop transformations will
be legal and beneficial.

Dependence analysis determines whether loop iterations can be
executed independently, or whether reordering them will cause the
program to execute incorrectly. Comprehensive dependence analysis
for all possible array subscript expressions is very time consuming
(it is an NP-Complete problem), and therefore must be approximated.

Accurate dependence analysis at times requires information about

how the program is used, i.e., runtime information. A third factor

which may inhibit an accurate analysis is that a dependence may

truly exist within a program, but the algorithm in which it occurs

may be insensitive to its violation and thus the dependence could be
ignored.

Once the dependence and loop analyses have been done, loop

optimizations may take place. Generally the optimizations are

different types of loop transformations which enhance vectorization

or parallelization. Many of the code transformations performed by

fpp and KAP will be described below. A complete description of the

fpp code transformation techniques may be found in [3]. Code

transformations which KAP uses are described in [4]. A summary of

each may be found in Table 6.

Benchmarks

As mentioned before, benchmarks used in this study were selected

from NAS sources and the Perfect Benchmarks [1]. NAS private

codes include 2-D and 3-D aerospace simulation codes, structural

codes, and synthetic benchmarks either developed here or in

common use at the NAS facility. NAS private codes include seven

Navier-Stokes computational fluid dynamics (CFD) codes, of which

four involve chemistry, and one solves a supersonic problem. Of thee

remaining NAS codes, one solves a structural problem for a high-

Mach air frame, and two are synthetic FFT codes. A detailed

description of each benchmark is given in Table 7.

Benchmark memory requirements vary from as little as 110 Kword

to as large as 54 Mword. The distribution of memory requirements

for the various benchmarks is shown in Figure 1. A detailed

summary of benchmark characteristics is given in Appendix A.

7

Code Transformatio_

Reduction recognition yes

Recurrence recognition yes

Two version loops yes

Vectorize IF loops yes

Partial loop vectorization (fission) yes

Loop collapse yes

Loop fusion yes

Loop interchange yes

Loop peeling yes

Loop unrolling yes

Loop rerolling yes

Scalar expansion yes

Code inlining yes

KAP

yes

yes

yes

yes

yes

yes

no

yes

yes

yes

yes

yes

yes

Table 6 m Fpp And KAP Code Transformations

Number of

Programs

14

12

10

8

6

4

2

0

<IMW 1 5 5 - 10 >10MW

Figure 1 m Distribution of Benchmark Memory Requirements

Total number of floating point operations vary from 58 million to 78

billion operations. Most of the NAS codes have between 10 and 25

billion floating point operations, while the Livermore Loops,

NASKERN, and all but one of the Perfect Benchmarks are much

smaller than that. The largest code is NAS10, the smallest is SPICE.

Given the available floating point units on the Y-MP, the exact mix of

floating point additions, multiplications, and reciprocals is critical to

achieving maximum performance. If there are significantly more

operations of one type than another, some floating point functional

unit will be left with no work while another will have an excess.

More precisely, each functional unit should have enough work to fill

the same number of clock periods if it is to achieve maximum

overlap. One should note, however, that scheduling conflicts and

program dependences can further inhibit overlap even when the

number of each type of operation is balanced. The next figure shows

1

NAS01

2

NAS 02

3

NAS03

4

NAS 04

5

NAS05

6

NAS 06

7

NAS07

8

NAS 08

9
NAS 09

I0

NASI0

II

MFLOP 90

12
NASKERN

is a general purpose 3-D fluid flow solver for high angle-

of-attack problems. It uses an implicit finite difference

scheme for solving the viscid, unsteady flow about a sphere.

It employs approximate factorization with flux-split

differencing in the solution.

simulates the incompressible laminar fluid flow around a

single post mounted between two plates. The Navier-Stokes

equations are solved in three dimensions by an approximate

factorization algorithm, using pseudocompressibility to

solve the pressure field.

computes the decimal expansion of the mathematical constant

K. The core of this program uses highly vectorizable fast

Fourier transforms (FFTs).

repeatedly computes forward and reverse FFTs on pseudorandom

data. The FFTs are highly vectorizable. With hand-inserted

vectorization directives, both NAS03 and NAS04 are capable

of 150 to 160 million floating point operations per second

(MFLOPS) on a single Y-MP CPU.

gives a time-accurate 3-D simulation of the mixing of

reactive fluids. Pseudospectral methods are used to compute

the derivatives, and fluid flow incompressibility is

modified by adding terms to account for variable density in
the fluid.

gives a time-accurate solution to a 3-D Navier-Stokes

problem. The code sweeps entire planes, performing a

Gaussian elimination of conserved quantities at each cell.

uses a fast, accurate, Choleski method for solving 16,000

linear equations. The test case used is the structural

analysis of an air frame under high-Mach conditions.

solves a 2-D Navier-Stokes problem with terms included to

account for reactive chemistry.

solves a supersonic 2-D Navier-Stokes problem.

solves a 2-D Navier-Stokes problem involving chemistry.

executes 24 common synthetic Fortran kernel loops. The

loops range in complexity from easily vectorized, to very P

difficult. (This code is also known as the Livermore

Loops.)

7 kernel routines often used in CFD calculations. They

include an MxM matrix multiply, a 2-D complex FFT, Choleski

factorization, a vectorized block tri-diagonal solver,

Gaussian elimination, a vortex generator, and a penta-

diagonal matrix solver.

Table 7 -- Benchmark Descriptions

9

13

AMD
a fluid dynamics code used to study air pollution.

Its computational kernel relies heavily on FFTs.

14

ARC2D
solves a 2-D supersonic reentry fluid dynamics problem using

a sparse linear system solver and a fast elliptic solver.

15

BDNA
a molecular dynamics simulation of a nucleic acid. This

code uses an ordinary differential equation (ODE) solver.

16

DYFESM
performs a structural dynamics analysis for an engineering

design problem. It uses a sparse linear system solver, a

nonlinear algebraic system solver, and an ODE solver.

17

FLO52
solves a 2-D transonic flow fluid dynamics problem. Its

computational kernel uses a multigrid scheme with an ODE
solver.

18

MDG
performs a molecular dynamics simulation of liquid water,
using an ODE solver.

19

MG3D
solves a signal processing problem involving seismic

migration. The code uses both FFTs and ODE solvers.

20

OCEAN
2-D fluid dynamics simulation of a section of ocean. This

solver uses primarily FFTs.

21

QCD
lattice gauge solution to a quantum chromodynamics problem.

A Monte Carlo scheme is used in the solution.

22

SPEC77
another fluid dynamics code--this code performs a weather

simulation using FFTs and rapid elliptic problem solvers.

23

SPICE
simulates electronic circuits using sparse linear solvers

and ODE solvers.

24

TRACK
another signal processing code--this code performs missile

tracking using convolution as the primary mathematical

technique.

25

TRFD
uses integral transforms to solve a 2-electron problem from

molecular dynamics.

Table 7 -- Benchmark Descriptions (cont.)

the percent of clock periods occupied by floating point adds,

multiplications, and reciprocals. A full divide requires three

multiplies and a reciprocal. Figure 2 clearly shows that these

benchmarks are fairly well balanced as far as the additions and

multiplies are concerned, but the reciprocal unit is somewhat
underutilized.

10

80 I • Additions7 0 [] Multiplications

60

50

%CPs 40

30

20

10

0

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

Benchmark

Figure 2 _ FLOP Balance Normalized By CPs

Benchmark I/O requirements were very low, with only a few

exceptions. Sixteen benchmarks required less than 1 Mbyte, four

used between 1 and 10 Mbytes, and only one (MG3D) used more

than 100 Mbytes of I/O. As mentioned earlier, all I/O was mapped

to the SSD rather than going out to a rotating disk. Using the SSD
reduced the actual time spent in I/O to a minimum.

The benchmarks showed a wide mix of performance when compiled
with default vectorization (Figure 3). The codes that have the best

performance (over 100 MFLOPS) are all CFD codes that do not use

FFTs as solvers (including both 2-D and 3-D codes), kernels from CFD

codes (NASKERN), and a molecular dynamics code which employs an

ODE solver (BDNA). The FFT based codes, among others, have a
relatively moderate level of performance.

Compilation Expense

Code optimizations can only come at the expense of code analysis.
Sometimes the analysis is inexpensive, sometimes it is not. The

analysis necessary for veetorization is generally a subset of that

required for parallelization. In order to provide a basis for

comparison, Figure 4 gives the compilation times, in seconds, for each

11

M

F

L

0

P

S

180

160

140

120

100

80

60

40

20

0

•1

m)

• • • •

• •

• •
I I I I I

0 5 10 15 2o 25

Benchmark

Figure 3 m Default Vectorization Performance

of the benchmarks using only the default CRAY optimizations.

program compilation times are given in Appendix B.

All

As can be seen from the chart, all codes compiled fairly quickly, even

the larger codes like QCD (number 23 in the chart). The question is

whether enhanced vectorization or parallelization adds significantly

lO0

9O
S 8O

e 70
c 60

o 5O

n 40

d 3O

s 20
10

0

• 1 --1

• • •

•I

• m
m

• •
• • • •

• • • • •

i i i i i
0 5 1 0 15 20 25

Benchmark

Figure 4 m Compile Times with Default Vectorization

12

to the compile time. In a research environment like NAS, codes are

constantly being modified and recompiled. Thus features that take

too long will go unused unless they also significantly shorten the

execution time. The following charts show how enhanced

vectorization and parallelization increase the compilation time. The

shortened execution time will be treated in the next two sections.

The next chart (Figure 5) gives the ratio of enhanced vector compile
times (Cv) to default compile times (Cd). From the chart it is clear

that fpp adds little to compilation times (about 23%), but KAP/CRAY

adds significantly (112% on the average). In one case (NAS09) KAP

adds over 350%, boosting the compile time from 38 to 173 seconds,

or about three minutes. Even though this is much more time, it is not

an intolerable amount of time to wait for a compilation.

Figure 6 shows the expense of compilation using automatic

parallelization. The results are similar but more exaggerated than

for enhanced vectorization, since the analysis for parallelization is

more extensive. For parallelization the average compilation time for

fpp is about 3.2 times the default compilation time, while the

average KAP time is only a little worse than fpp (3.78). The range

for parallel compiles, however, is much larger. Fpp ranges from 48%

to 429%" more time than default vectorization, while KAP ranges from

88% more to 600% more compile time. The longest KAP compile time
is just under 400 seconds (6.5 minutes), which could be tiresome to

wait for if it happened too frequently.

5.00 • fPP

r_ [] KAP

4.00 i KAP+fpp

D

3.00 r_
cv/c ;, ;, . .

2.00 L_ ,., ,.,
• all • • •

1.00 -=t • • • • • • • • -= • • • •

0.00 I I I I I

0 5 10 15 20 25

Benchmark

Figure 5 -- Enhanced Vector Compilation Time Expense

13

8.00

7.00

6.00

5.00

Cp/Cd 4.00

3.00

2.00

1.00

0.00

U

• fpp

[] KAP

• KAP+fpp

• . ,', . • ". . •
[] • • [] 0

0_ • • [] •_ ° • °
° []

• ° • O- []
0 [] •

_ _ I

[]

o

[] []

I I 1 I I

0 5 10 15 20 25

Benchmark

Figure 6 -- Parallel Compilation Expense

Enhanced Vectorization

The CRAY Fortran compiler, cft77, vectorizes some types of loop

constructs, but in order to keep the compilation time to a minimum it

generally uses only those optimizations that are both fast and

frequently effective. Fpp, on the other hand, performs a more

extensive analysis and therefore has greater potential for improving

code performance. Figure 7 shows the performance of all

benchmarks, in millions of floating point operations per second

(MFLOPS), after enhanced vectorization has been used. Appendix C

contains performance information for each of the benchmarks under

both default and enhanced vectorizations.

From the chart it appears that there is little change in benchmark

performance. Those codes that do well without enhanced

vectorization also do well with it, and those that do poorly without

are not much improved. Figure 8 summarizes the actual speedups

(default vectorization elapsed time divided by enhanced

vectorization elapsed time) observed for the individual benchmarks.

Figure 8 seems to indicate that the speedups cluster about 1.00 (i.e.,

no speedup at all), and indeed this is the case. The average speedup

achieved by fpp is 1.02, which is not as good as one might expect.

Fpp gained some improvement for 12 of the 25 codes, or just less

than half of the benchmarks. We were hoping for at least 25%

improvement but none of the codes did even that well, although two

14

200

180

160

M 140

F 120
L

100
O

p 80

S 6O

4O

20

$

[]
[]

r3_

• fpp
[] KAP

i_1 • KAP+fpp

=i _ U
0

, r _'

I I I I ,r_ .r_. I

5 10 15 20 25

Benchmark

Figure 7 -- Enhanced Vector MFLOPS

codes were close. The median speedup was 1.00, the minimum 0.84

(16% slower than no enhanced vectorization), and the best speedup
was 1.24. The KAP average was only slightly better but the median

was the" same as fpp's. Statistics for fpp, KAP, and both are
summarized in Table 8.

2.00

1.80

S

p 1.60

e

e 1.40

d

u 1.20

P
1.00

0.80

fi
_,=

[]

[]

o_
I I I

• fpp
[] KAP

• KAP+fpp

0 5 10

;eft'"
rl.,[] =1

I I

15 20 25

Benchmark

Figure 8 -- Speedup from Enhanced Vectorization

15

Codes Improved

Median Speedup

Average Speedup

Minimum Speedup

Maximum Speedup

KAP
12 i0 17

1.00 1.00 1.03

1.02 1.03 1.09

0.84 0.89 0.83

1.24 1.53 1.96

Table 8 -- Enhanced Vectorization Speedup Statistics

Combining KAP and fpp had some interesting results. The minimum

speedup was 0.83--worse than either fpp or KAP alone, but all other

statistics showed some improvement. The median increased to 1.03-

slightly better than either KAP or fpp alone, while the average

speedup was significantly improved. Fully 17 of the 25 codes

showed some improvement, and the best speedup was nearly a

factor of two over the default vectorization. The following chart

(Figure 9) gives the distribution of speedups for fpp only (black

column), KAP only (white column), and both (grey column).

The four codes which benefitted most from enhanced vectorization

used FFTs as a major part of their computation. Unfortunately, at
least one of the FFTs (NAS04) performed well below what it was

capable of, ,even with enhanced vectorization. As a separate

experiment, NAS04 was hand optimized by inserting compiler
directives above loops which were known to be vectorizable. In

every case the apparent dependencies were known to be false -- no

true dependencies were violated at any time. The elapsed time of

Benchmarks

16

14

12

10

8
6

4

2

0

[] fpp
[] KAP

[] KAP+fpp

0.76- 1.01- 1.26- 1.51- 1.76-

1.00 1.25 1.50 1.75 2.00

Speedup

Figure 9 --Enhanced Vectorization Speedup Distribution

16

the new code was 89.28 seconds, which corresponds to 160.81

MFLOPS, a speedup of 2.89 over the default compiler optimizations,

or a factor of 2.55 faster than the original code using enhanced
vectorization.

Parallelization

The primary motivation for using parallel processors in scientific

work is to increase the computational power available to a user.

Unfortunately, one's ability to exploit that power depends on the

quantity and granularity of parallelism within the program, and the

overhead one must pay to start, suspend, synchronize, and terminate

parallel tasks. Figure 10 shows the raw performance of each of the

benchmarks using 4 CPUs in its execution. Performance information

for the parallel execution of each of the benchmarks is included in
Appendix C.

If a program has sufficient parallelism one can expect the speedup to

be close to the number of available processors. Figure 11 shows the

speedup obtained by using fpp, KAP/CRAY, and both with four CPUs
in dedicated time.

sSo
500

45O

M 4O0

F 350

L 300

O 250
P 200

S 150

leo

5o

0

0

t3
a

• fpp
[] KAP

BI • KAP+fpp

r,: •

re: ._
I I _°'* I

_g

• •

I F¢.------'¢--'¢--I

5 10 15 20 25

Benchmark

Figure 10 -- 4 CPU MFLOPS

17

Tv/T4

3.00

2.50

2.00

1.50

1.00

fi

a ,.,
o

rl •

• •

• []

0.50 I I I

0 5 10 15

Benchmark

[]
II.

• fpp

[] KAP

• KAP+fpp

0

I I

20 25

Figure 11 -- 4 CPU Speedups

The speedup is calculated using enhanced vectorization as the basis

for comparison even though it did not always improve the execution

time. Given symbolically, the n-processor speedup is defined here as

rv
S n =_

T
n

where Tv and Tn are the enhanced vector and n-CPU elapsed times,
respectively.

This figure shows widely scattered speedups for the benchmarks. It

is not too surprising that some codes would parallelize better than

others, nor even that the overhead of attempting to parallelize some

codes would be greater than the benefits, yielding a speedup less

than one. It is valuable to note, however, that many of the codes did

show some improvement: 15 benchmarks compiled with fpp showed

some improvement over enhanced vectorization, 20 improved with

KAP, and 17 improved when both fpp and KAP/CRAY were used.

The benchmark performance statistics for the 4 CPU runs are

summarized in the Table 9. The distribution of speedups is given in
Figure 12.

18

Codes Improved

Median Speedup

Average Speedup

Minimum Speedup

Maximum Speedup

f4_ KAP Both
15 20 17

1.14 i.I0 1.07

1.41 1.42 1.48

0.65 0.91 0.66

2.88 2.90 2.99

Table 9 -- 4 CPU Speedup Statistics

The FFT codes which improved significantly under enhanced

vectorization did not improve as much as might be expected under

parallelization. This is in part because even after enhanced

vectorization they were relatively poor performers--under 100

MFLOPS on a single CPU. The improvement seen with 4 CPUs

matches the improvement gained under enhanced vectorization. The

semaphore wait time for these codes is very close to 75%. This

indicates that the improvements did not come from parallelization,

but rather from the enhanced vectorization which is also present
with the parallelization.

The codes which performed well under parallelization were 2-D CFD

codes and one 3-D CFD code that did not use FFTs in their

computational kernel. Each of these codes were in the 100 to 200

MFLOPS range, but the fact that these codes are 2-D CFD codes is

more important than their initial high performance. Other codes

displayed equally high performance under enhanced vectorization

but did not perform as well under parallelization.

Benchmarks

12

10

8

6

4

2

0

0.51 -

1.00
1.01 -

1.50

1.51 -

2.00

Speedup

Figure 12 -- 4 CPU Speedup Distribution

• fpp

[-1 KAP

[] KAP+fpp

2.51 -

3.00

19

A separate experiment was conducted in which NAS04 was hand

optimized, as it was for enhanced vectorization. The result was that

its elapsed time dropped to 51.84 seconds, with 101.43 seconds of

CPU time on 4 CPUs. This corresponds to 276.93 MFLOPS, or more

than 4 times better than any execution without hand optimization.

If one compares the 4-CPU distribution against the enhanced

vectorization speedup distribution, it is readily apparent that they

are similar, in that the majority of the codes show less than a 50%

improvement. They also differ in that a greater number of

benchmarks show an improvement greater than 50% (i.e., a speedup

greater than 1.50). Another difference is that the codes which make

up the high end of vectorized codes are FFTs, where the CFD codes

were improved by parallelization and FFTs were not.

Each of the benchmarks was also run with 8 CPUs to see how the

performance would differ from 4 CPUs. The raw performance (in

MFLOPS) is given in Figure 13. Figure 14 shows the speedup gained

by using 8 CPUs. The statistics are summarized in Table 10, and the

distribution of speedups is given in Figure 15.

800

7O0

M 600

F 500

L
400

0

p 300

S 200

100

0

r_ _ [] fpp
[] [] KAP

• KAP+fpp

.* []

=I

Ra P_

00
I

5

I ;'; I

10 15

Benchmark

Figure 13 -- 8 CPU MFLOPS

._, _ _ ,_ r," . 17.
• I • "...LL.,__:_-_I

20 25

2O

Tv/T8

4.50

4.00

3.50

3.00

2.50

2.00

1.50

1.00

0.50

0.00

0

rl
[]

• ==l •1

,,'¢

[] • fpp
[] KAP

• KAP+fpp
[]

[]

I I I I I

5 10 15 20 25

Benchmark

Figure 14 -- 8 CPU Speedups

The 8 CPU speedup scatter plot (Figure 14) shows several things of

interest. It shows that the codes which improved the most with 8

CPUs were the same codes that improved the most with 4 CPUs,

namely, CFD codes. It is also clear that the efficiency is dropping

rapidly with an increasing number of CPUs. Parallel efficiency is
defined as

En

Sn T v

n
n T

n

(For example, the 8-CPU efficiency is Tv/(8*Ts)). The best

efficiencies obtained by the 4 CPU runs were close to 75%, the

equivalent of using 3 out of 4 CPUs. The highest 8 CPU efficiencies

were lower--about 50%, or the equivalent of using 4 CPUs out of 8.

Essentially, we had to double the number of CPUs in order to buy
that additional 25% improvement.

21

Benchmarks

1 0 "ll • fpp

8 Ill I-I nKAP

6

4

2

0

0.51- 1.01- 1.51-2.01- 2.51- 3.01-3.51-4.01.

1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50

Speedup

Figure 15 -- 8 CPU Speedup Distribution

Parallelism and Overhead

Fpp and KAP/CRAY exploit parallelism found in program loops.

When nested loops are encountered it is generally more effective to

vectorize the inner loops and distribute outer loop iterations across

the available processors. Vectorization should never be sacrificed for

the sake of large grain parallelism, because of the low initial

overhead and the high potential gain vectorization offers. Data

dependencies may interfere with both the veetorization and

parallelization of loops. If the loop is large and highly vectorizable, it
is often parallelizable.

Given the speedup and the number of processors, we can calculate

the effective parallel fraction of a code. Amdahrs Law says that the

n-processor speedup (Sn) is related to the fraction of the operations

which can be performed in parallel (p) and the number of processors
(n) by the equation

1

S n -
1-p+P

n

Amdahrs Law assumes that the parallel operations can be exploited

without incurring any penalty, and the operations are continuous

rather than discrete. In MIMD systems neither assumption is true,

22

Codes Improved

Median Speedup

Average Speedup

Minimum Speedup

Maximum Speedup

f_ MAP Both
15 17 17

1.18 1.06 1.06

1.59 1.53 1.63

0.64 0.87 0.66

4.24 4.23 4.40

Table 10 -- 8 CPU Speedup Statistics

but the assumption of no overhead is most important. The

microtasking library incurs overhead in creating, suspending,

restarting, synchronizing, and terminating parallel tasks. The

overhead incurred within a code will depend on the number of

processors used, and the number, size, and structure of each loop.
Thus Amdahl's Law would have to have a term to account for

parallel overhead which varied with the conditions of execution.

However, if the overhead varies only slightly with the number of

processors, one can at least obtain the effective parallel fraction,

which will give some indication of a code's parallel performance, by

solving Amdahl's Law for p.

p B

n 1 n

(n-1 1 -- - (n-l) 1 -
S n

The next chart (Figure 16) shows the effective parallel fraction for

each of the benchmarks using 4 CPUs. When we report values of

the parallel fraction p for a given program, we will generally present

it as a percentage, e.g., p=0.43 would be reported as 43%. Notice also

that the parallelism is negative if the application is slowed by

parallelization. This can occur when the overhead of initiating and

terminating a parallel task is larger than the benefit gained.

The overhead for n processors is defined here as

Overhead = 100

(User n+ Sysn)-(User v + S ysv)

(Userv+ Sys v)

23

where User and Sys are the user and system times, respectively, for

the n-CPU parallel runs (n) or the enhanced vector runs (v).

Overhead for the 4 CPU runs is shown in Figure 17.

Loops that vectorize well do so because the iterations, or at least

parts of the iterations, can be executed independently. If there is

enough independent work in these loops, the iterations can be

divided between multiple processors for a net gain in speed. How

much work is "enough" is determined by the overhead involved in

starting up the parallel processors and dividing the loop iterations.

This overhead is in addition to what a serial version of the same

program would do, so it necessarily increases the work load of the
machine.

Very long loops permit the overhead to be amortized over many

iterations, which improves the overall performance of the code. The

lengths of the dominant loops were measured for several codes, and

the results are recorded in Table 11. Loop lengths are measured in

iterations. (Recall that NAS04 is an FFT code, while the others are

CFD codes.) The parallel fraction for NAS04 is from the automatically

parallelized version. The hand optimized version has a parallel
fraction of 55%.

100.00
P 80.00
a

60.00
r

40.00
a

I 20.00

I 0.00

e -20.00
I

-40.00
i

-60.00
s

-80.00m

-100.00

"I

"_' "I

,., ,-, ,',

• fpp

• , _ _ [] KAP
o7 [] _ • KAP+fpp

• El

• _,, i3 [] .

nu

0

I I I I I

5 10 15 20 25

Benchmark

Figure 16 -- % Parallelism in 4 CPU Runs

24

140

% 120

O 100

v 80

e
6O

r

h 4O

e
2O

a

d 0

-20

"i
i-I

[]

•

• fpp
[] KAP

• KAP+fpp

it,

• 6¢' • ,:,a,., n. ga

I I I ° I I

5 10 15 20 25

Benchmark

Figure 17 m % Overhead in 4 CPU Runs

The overhead is especially important to the throughput of a machine.

A 100% overhead means that as much time is being spent

maintaining parallelism as is accomplishing useful work. It also

means the throughput could be reduced by 50%. The overhead is

very high for many codes, most of which do not parallelize well. Not

surprisingly, the codes which do parallelize well have low levels of

overhead. If only the high performance codes were used (those with

speedups greater than 2.00), the average overhead would be around

20%. This would reduce the potential throughput by about 17% over

serial execution. This might be acceptable if there are enough idle

CPU cycles, in which case the result could be a shorter average
turnaround time for jobs in the machine.

_ Parallel Fractio_

NAS04 60 5 %

NAS01 I00 63 %

NASKERN 256 42 %

NAS06 1,000 88 %

NAS08 11,000 81 %

NASI0 26,500 79 %

Table 11 m Loop Lengths and Parallel Fractions

25

As mentioned before, the overhead does vary with the number of

CPUs used. Some of the poorly parallelizing codes suffer substantial

increases in overhead when going to 8 CPUs, but that doesn't matter

much since such codes would probably not be used in their parallel

form. The highly parallel codes, however, add approximately 15%

overhead by going from 4 CPUs to 8. The effective parallelism and

overhead for the 8 CPU runs are shown in Figures 18 and 19.

Percent Vectorization

While it is possible, in theory, to parallelize some poorly vectorized

code, no evidence was found in this study that would indicate such

was taking place. This may be because such opportunities might not

exist within the selected benchmarks, or because the tools

themselves might not be set up to do that. While high vectorization

levels seem to be required in order to parallelize a program, it is not

a guarantee of success. Several codes, e.g. NAS05 and NASKERN, had

higher levels of vectorization than their levels of parallelization

would suggest. (Percent vectorization for each benchmark is

calculated in Appendix D.)

100.00

P 80.00
a

60.00
r

40.00a
I 20.00

I 0.00

e -20.00
I -40.00
i

-60.00
s

m -80.00

-100.00

0

[] ,.,

r_ •

• fpp

[] KAP

13 • KAP+fpp

• I1

r2 _G ':' r; []

17 ="

i I I

5 10 15

Benchmark

El

r2 m r,_ r2
• []

1 i

20 25

Figure 18 -- Parallelism in 8 CPU Runs

26

300

% 250

0 200

V
150

e

r 100
h

e 50
a
d 0

-50

,,•:•

• []

• fpp

[] [] KAP

• KAP+fpp

[] ml •

1,60 [_ m rl ;,6 m) _ []

I I I

5 10 15

Benchmark

20

_r2.•

I

25

Figure 19 -- % Overhead in 8 CPU Runs

Figure 20 shows the relationship between percent vectorization and

percent parallelization for the 4 CPU runs. This chart shows that the

effective parallelism is clearly related to the percent veetorization,

although the correlation is not direct. Percent vectorization appears

to be a least upper bound of the percent parallelization, thus it can

be substituted directly into Amdahrs Law to obtain a tight upper
bound on parallel speedup. The parallelism values for the 8 CPU

runs are very nearly the same as for the 4 CPU runs, so no separate

chart is presented. Percent parallelism for each benchmark is given
in Appendix E.

Each of the remaining charts (Figures 21 through 25) emphasize the

high level of vectorization needed for a significant performance. At

the same time they remind us that high vectorization is no guarantee

of good parallel performance. It is a necessary but not a sufficient

condition for parallelization. Figures 21 and 22 show the parallel

speedup as a function of vectorization. Figures 23, 24, and 25 show

the performance in MFLOPS as a function of vectorization. The steep

curve associated with Amdahl's Law can be seen in 24 and 25.

27

P

a

r

a

I

I

e

I

i

s

rn

100

8O

60

40

20

0

-20

40

60

80

-100

0

[] KAP •
• KAP+fpp _* D • "1_!

[] •

R • • • •

I_ " • * • 0. 13

I I I I I I I I I I

10 20 30 40 50 60 70 80 90 100

% Vectorization

Figure 20 -- 4 CPU % Parallelism vs. % Vectorization

S

P

e

e

d

u

P

3.00

2.50

2.00

1.50

1.00

0.50

0

• fpp

D KAP m_ *Y

• KAP+fpp [] •

a ._ =_

[]
rm

•el_•

,., ".,.,-
m-_ I"1 []• [] _*

•11

I I I I I I i I

10 20 30 40 50 60 70 80

% Vectorization

el• Ci

I !

90 100
,=..

Figure 21 m 4 CPU Speedup vs. % Vectorization

28

S

P
e

e

d

u

P

4.50

4 O0

3.50

3.00

2.50

2.00

1.50

1.00

0.50

0.00

0

• fpp
[] KAP
• KAP+fpp

fi

"=1
[]

_1:3 []
• o =1:3
" r.•

[]1::1 _3 •

__•g r_; ";"t-I .J "" _;•[] [] *=_.. _t.]
ell

I I I I I I I I I I

10 20 30 40 50 60 70 80 90 1 O0

% Vectorization

Figure 22 -- 8 CPU Speedup vs. % Vectorization

M

F

L

O

P

S

200

180

160

140

120

100

8O

6O

40

20

0
,-3

I

10 20

• fpp • .=o.I
[] KAP • _..r

_-.=
• KAP+fpp El

[]
[]

[] -=

I I I I I I I

30 40 50 60 70 80 90

% Vectorization

Figure 23 -- Enhanced Vectorization

• []

I
P

100

29

M

F

L

0

P

S

5OO

450

400

35O

300

250

200

150

100

5O

0

0 10

• fPP

[] KAP

• KAP+fpp

I"1I

20

*'a I I I I

30 40 50 60 70 80

% Vectorization

d'
L'.

• ;,3

I_D'=
I"_,o, •

I

90

I

100

Figure 24 _ 4 CPU MFLOPS

M

F

L

0

P

S

700

600

5OO

400

300

200

100

0

• fpp

I'1 KAP

• KAP+fpp

0 10 20 30 40 50 60

% Vectorization

r;d

M..

I-1

ql'

[]

. [] E*l !

I I I ,

70 80 90 100

Figure 25 _ 8 CPU MFLOPS

3O

Compilation Problems

Neither fpp nor KAP were completely free of problems. KAP had

more problems than did fpp, probably because the writers of fpp had

greater access to the system, particularly fmp, the program which

translates microtasking directives into CRAY library calls. All of the

bugs we discovered in both products were annoyances, but could be

tolerated using a simple work around. None were so serious as to

render the product unusable, and all seemed to be fixable with no

more than a moderate amount of effort. Below we give a brief

summary of the bugs we found.

• KAP incorrectly declares CDIR$ SHORTLOOP on some variable

length loops, which may give either incorrect results or a

floating point exception.

• KAP leaves DATA statements within CMIC$ PARALLEL

sections, which causes CRAY Autotasking to fail during

compilation. One might argue that DATA statements may not

legally occur where CMIC directives are allowed, but neither

does KAP flag it as an error. Either moving DATA statements to

the beginning of a routine or flagging them as being out of

place would be acceptable.

• KAP occasionally uses KAP-generated indexing functions or

arrays, but doesn't provide a definition for them. This causes

undefined external references to occur in the program.

• KAP does not always provide SHARED or PRIVATE

declarations for array index variables it introduces into the

program. Parallel programs are very sensitive to whether

certain variables are private or shared, and fmp is not able to
decide which mode is correct.

• Fpp does not always distinguish between comments that are

compiler directives and those that are not. As a result, fpp

sometimes rearranges microtasking directives which should be

left in place.

Conclusions

Using fpp to enhance the vectorization does not significantly slow

down the compilation process. It added, on the average, only 23% to

31

the compilation times of our benchmark suite. On the other hand,
neither does it significantly improve its performance. The FFT codes
improved the most, but the best improvement was only 24%.

In contrast, using KAP for enhanced vectorization does slow program
compilation down considerably, adding on the average 112%, and
sometimes as much as 350% to the compilation time. To its credit, it
does speed up FFTs significantly. In two cases, FFT benchmarks were
improved by approximately 50%. Combining fpp with KAP brought
about an even greater improvementmalmost 100%. Like fpp, though,
non-FFT codes did not noticeably improve.

Both KAP and fpp substantially slowed the compilation time when
they were used for automatic parallelization, and KAP was usually
only a little slower than fpp. Both improved the performance of CFD
codes, especially the 2-D CFD codes. Used together, the improvement
was a factor of 2.5 to 3.0 using 4 CPUs, and from 2.5 to 4.5 on 8 CPUs.
Neither fpp nor KAP had a significant performance edge over the
other.

Neither KAP nor fpp were able to uncover sufficient parallelism in

CFD codes for highly parallel execution. Parallelism ran about 60% to

90% which would correspond to maximum speedups of 2.5 to 10,

given 1) an infinite supply of parallel hardware, and 2) no increase

in the overhead to use it. As good as this is, we anticipate far greater

levels of parallelism (95% to 99.9%) will be needed to take advantage

of future parallel hardware. The overhead required to maintain

parallel execution was relatively large, and reducing this might

significantly improve these values.

Parallel efficiency was much higher for 4 CPU runs (75%) than for 8

CPU runs (50%), primarily due to Amdahl's Law and the modest

amount of parallelism found in the programs. It is a corollary to

Amdahrs Law that the efficiency will always be higher for the 4 CPU
runs than the 8 CPU runs. It is because of the moderate levels of

parallelism that the parallel efficiency differs so greatly.

Overhead from parallelization was high, to the extent that

widespread parallelization could significantly reduce a system's

throughput in a production environment. Overhead was especially

high for codes that did not parallelize well. Overhead for the CFD

codes on 4 CPUs averaged approximately 15% to 20%. On 8 CPUs the

average increased to about 25%.

32

Program vectorization and Amdahl's Law determine an upper bound
on speed improvements due to parallelization. Parallelized codes are
highly vectorized codes, but a high level of vectorization does not
guarantee that a code will also parallelize. The need for high levels
of vectorization grows dramatically as the number of CPUs increases.

Because the levels of parallelism KAP and fpp found in even the best
codes were much lower than desired, we conclude that such tools will
probably not be able to find sufficient parallelism without human
assistance. In our opinion the ideal tool for parallelizing Fortran
programs would have:

• Extensive dependence analysis m this has been a traditional
area of focus, and allows the tool to distinguish, albeit
imperfectly, between code which is parallelizable and code that
must remain sequential. Both KAP and fpp seem to do quite
well at this. The most obvious problem was that in order to
correctly determine that certain dependences were false, both
tools would have needed information about the program's
runtime behavior, or about its algorithms. More extensive
analysis might help some, but it can't use information that isn't
there without a programmer's help.

• Extensive code transformation vocabulary m another area of
traditional focus, it gives the tool the ability to improve the
level of parallelism or the granularity of parallelism while
retaining the original meaning of the program. Again, KAP and
fpp seem to do well at this.

• Runtime statistics _ allows the tool to steer the user towards
the most heavily used, and therefore most profitably optimized
sections of code. It also could retain program traces and
branch probabilities, which might further assist in choosing
appropriate code restructuring optimizations. "

• Queriable interface m allows the tool to display only the
information that the user wants to see, instead of all
information that might be relevant. It would be beneficial if

the interface were sufficiently robust to be able to identify

user supplied patterns in the code, array indices, and variable

usages.

33

• Analysis facility m indicates the circumstances under which
perceived dependences are false so the programmer can decide

whether that section of code is safely parallelizable.

• Suggestion facility m makes optimization and parallelization

suggestions to the user, and indicates the circumstances under

which the suggestions are valid. This should include an

understanding of the vectorization and parallelization overhead

involved, letting the user know when the section of code being

parallelized _ may not have sufficient work to overcome the

expected cost.

Acknowledgements

We would like to thank all those who helped out with the

preparation of this report, and as is always the case, there are

several who merit special recognition. Robert Bergeron and Russell

Carter contributed significantly to the ideas in this report, and

steered us away from numerous pitfalls in the data gathering. Kuck

and Associates generously allowed the use of their software and

provided the necessary support, which we appreciate greatly. Last

but not least, Eugene Miya contributed to the philosophical
foundations of" this work.

References

[1] L. Kipp, "Perfect Benchmarks Documentation, Suite 1," Center

for Supercomputing Research and Development, University of

Illinois at Urbana-Champaign, Urbana, IL, 1990.

[21 "CRAY Y-MP Computer Systems Functional Description Manual,"

HR-4001, CRAY Research, Inc., Mendota Heights, MN, 1988.

[3] "CF77 Compiling System, Volume 4: Parallel Processing Guide,"

SG-3074 4.0, CRAY Research, Inc., Mendota Heights, MN, 1990.

[4] "KAP/CRAY User's Guide," Kuck & Associates, Inc., Champaign,

IL, 1989.

34

Appendix A m Benchmark Characteristics

This appendix lists several characteristics for each

benchmarks. They are:

of the

Source lines m number of text lines in the original program,

including comments and blank lines. No compiler directives
are included.

Size -- total program memory requirements, in megawords

(2**20 64-bit words), as obtained by compiling the program for

sequential execution by the CRAY Fortran compiler, cft77.

Memory size was measured by the UNICOS utility "size".

Floating point adds, multiplies, and reciprocals m total

operations in each category as measured by the Y-MP

hardware performance module (group 0).

Data transferred _ total program I/O requirements including

all raw and formatted read and write operations. The units are

megabytes.

35

o_

Benchmark Source Size

Name Lines (MW)
1 NAS01 6,388 53.24
2 NAS02 4,851 6.; 1

3 NAS03 2,198 1.73
4 NAS04 731

5 NAS05 3,419

6 NAS06 8,212
7 NAS07 721

8 NAS08 4,788

9 NAS09 4,848
10 NAS10 8,880

1 1 MFLOP90 7,338
1 2 NASKERN 1,074

1 3 ADM 6,137
1 4 ARC2D 3,996

1 5 BDNA 3,98O
1 6 DYI-E::_VI 7,640

1 7 FLO52 2,019
1 8 E,t_G 1,270

1 9 MG3D 2,792
2 0 OCEAN 4,375

2 1 QCD 2,359
22 SPEC77 3,927

2 3 SPICE 18,553
2 4 TRACK

2 5 TRFD

Average 4,592
Minimum 485

Maximum 18,553
Standard Dev.

Total

0.4'

23.84

9.23
2.14

7.11
0.86

7.07
0.2'

0.4"

0.25

1.15
0.36

0.11
0.32

0.11
0.57

0.27

2.27
0.39

0.31
3,822 0.17

485 1.02

3,780

114,803_

4.79

0.11

53.24
11.31

119.76

Floating Point
Adds

8,562,115,068
3,320,089,324

7,647,160,394
7,680,489,244

16,550,588,003

4,598,013,650
702,371,912

18,656,174,913
6,014,085,825

33,446,177,882
146,095,915

1,080,724,151

263,824,288
816,061,635
563,103,666

392,624,570
318,684,388

2,153,971,939
6,694,570,639

960,682,527
128,030,754

1,092,944,788

29,286,311
39,827,571

216,132,610

4,882,953,279

29,286,311

33,446,177,882
7,794,988,825

122,073,831,967

Floating Point

Multiplies
11,752,400,033

4,801,001,058

5,594,873,334
6,674,198,082

11,652,969,460

7,086,317,986

722,997,685
28,279,511,154
10,354,608,536

41,125,391,455

79,786,453
1,116,588,777

240,133,023
1,302,141,170

521,838,352
144,699,124

291,920,561
1,485,467,393

5,165,166,682
550,872,466

128,473,915
860,019,669

24,820,326

43,597,170

216,213,639

5,608,640,300

24,820,326
41,125,391,455

9,722,720,340
140,216,007,503

Floating Point
Reciprocals

620,432,216

5,764,488,705
2,346,221

2,186,073

50,241,896
404,732,247

113,834
3,829,361,830

1,309,310,052
3,115,375,229

4,663,693
32,395,031

23,057,175
132,689,166

92,161,725
42,488

31,327,690

264,938,807
298,632,702

19,050,428

3,041,035

15,502,016
3,662,4d4

1,360,233

735,436

Floating Point
Operations

20,934,947,317
13,885,579,087

13,244,379,949
14,356,873,399

28,253,799,359

Data Transferred

Mbytes
0.0
0.00:

0.00,
0.00_

0.02q
12,089,063,883 9.33C

1,425,483,431 24.60!
50,765,047,897 54.614

17,678,004,413 1.182
77,686,944,566 57.298

230,546,061
2,229,707,959

0.045

0.002
527,014,486 0.235

2,250,891,971 1.212

1,177,103,743 4.577
537,366,182 0.058

641,932,639 0.129
3,904,378,139 0.052

12,158,370,023 454.126

1,530,605,421
259,545,704

1,968,466,473

0.019

0.013
10.32,3

57,769,081 0.042
84,784,974 0.189

433,081,685 0.003

640,873,935 11,132,467,514 24.725

42,488 57,769,081 0.002
5,764,488,705 77,686,944,566 454.126
1,440,271,652

16,021.848.372
18,220,461,782

278.311_6R7 R4P
90.838

AiR 116

Appendix B _ Compilation Data

This appendix contains the CPU times used to compile each of the

programs, both for parallel and sequential execution. User and

system times were recorded from the Unix C-shell "time" facility.

37

L_
OO

Benchmark No fpp or KAP

Name User System

1 NAS01 59.73 0.51

2 NAS02 33.96= 0.67

3 NAS03 13.16 0.34

4 NAS04 7.47 0.22

5 'NAS05 24.20 1.21

6 NAS06 90.44 1.32

7 NAS07 7.54 0.22

8 NAS08 26.88 0.55

9 NAS09 36.47 1.79

1 0 NAS10 54.29 1.58

1 1 MFLOP90 11.82 0.56

1 2 NASKERN 6.64 0.25

1 3 ADM 33.80 0.50

1 4 ARC2D 31.45 0.56

1 5 BDNA 40.09 1.05

1 6 DYFESM 15.48 0.53

1 7 FLO52 16.05 0.33

1 8 _ 6.06 0.23

1 9 MG3D 44.61 0.45

20 OCEAN 11.16 0.66

21 O30 11.15 0.48

22 SPEC77 22.20 0.72

2 3 SPICE 56.04 1.68 57.73

2 4 TRACK 7.54 0.28 7.82

25 TRFD 3.31 0.21 3.52

Average 26.86 0.68

Minimum 3.31 0.21

Maximum 90.44 1.79

Standard Dev. 21.53 0.48

Total 671.54 16.90

Total

60.23

34.64

13.50

7.69

25.4

91.76

7.76

27.43

38.26

55.87

12.38

6.89

34.30

32.01

41.14

16.02

16.38

6.29

45.06

11.8- _

11.63

22.92

27.54

3.52

91.76

21.86

688.44

Vector fpp

User

69.63

47.71

15_.85

9.74

22.30

103.45

8.53

33.39

49.69

64.32

15.26

9.48

41.65

42.43

54.79

18.69

19.05

6.3z

62.25

14.06

12.67

27.36

System

0.82

0.53

0.33

0.25

0.39

1.90

0.19

0.54

1.48

2.44

0.48

0.40

0.7"

0.91

0.67

0.66

0.37

0.24

1.17

0.45

0.26

0.49

67.50 2.17

9.19

4.18

33.18

4.18

103.45

25.97

829.48

0.42

0.19

0.74

0.19

2.44

0.62

18.45

Total

70.45

48.23

16.19

9.99

22.68

105.35'

8.72

33.93

51.17

66.76

15.74

9.87

42.35

43.34

55.46

19.35

19.42

6.58

63.42

14.50

12.93

27.85

69.67

9.61

4.37

33.92

4.37

105.35

26.49

847.93

Parallel fpp

User

220.03

113.90

32.41

14.08

85.94

338.14

17.77

120.63

128.92

287.85

41.37

28.76

117.90

136.42

92.10

36.12

55.61

14.46

91.52

41.76

32.80

82.00

81.95

13.37

14.05

89.60

13.37

338.14

84.45

2.239.88

System

8.35

2.23

1.61

0.39

2.30

22.85

0.93

6.47

3.99

7.48

1.99

1.71

2.31

2.67

4.43

1.30

2.37

9.73

2.21

2.81

1.49

4.39

3.40

0.56

0.53

3.94 i
0.39

22.85

4.65

_R 4.q

Total

228.3_

116.1::

34.0,_

14.4;

88.24

360.99

18.70

127.11

132.91

295.34

43.36

30.47

120.21

139.09

96.53

37.42

57.99

24.20

93.73

44.57

34.29

86.40

85.35

13.92

14.58

93.53

13.92

360.99

88.07

RRR _7

Benchmark Vector KAP Parallel KAP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Name KAP User KAP System Compile Use= Compile S'_s Total KAP User

NAS01 47.83 0.59 59.45 0.72 108.60 47.31

NAS02 44.10 0.45 42.64 0.57 87.75 43.25

NAS03 8.3" 0.32 14.58 0.34 23.54 8.36

NAS04 4.42 0.16 6.82 0.24 11.65 4.42

NAS05 19.71 0.33 20.26 0.34 40.65 18.73

NAS06 99.83 0.88 79.89 0.74 181.3,_ 96.83

NAS07 4.02 0.111 7.79 0.20 12.12 4.03

NAS08 32.12 0.45 26.40

NAS09 135.45 0.8; 36.4"

0.41

0.57

NAS10 50.16 0.73 53.80 2.11

59.38

173.24

106.79

31.39

124.29

61.68

MFLOP90 13.97 0.76 12.06 0.65 27.43 14.14

NASKERN 8.93 0.16 6.75 0.27 16.10 8.62

ADM 31.8 0.50 33.68 0.80 66.79 30.85

ARC2D 19.83 0.43 32.04 0.52 52.82 19.10

BDNA 31.55 0.22 44.34 0.61 76.72 31.66

DYFESM 28.19 0.62 16.4" 0.43 45.65 28.06

FLO52 16.34 0.26 17.48 1.23

5.25 0.61 9.10 6.8"

31.12 0.81 54.0z 0.47

OCEAN 11.23 0.33 11.24 0.30

CCD 9.16 0.14 11.52 0.21

SPEC77 26.88 0.28

SPICE 47.64 0.6;

TRACK 7.61 0.20

TRFD 3.36 0.11

26.11

57.69

35.31

21.77

86.45

23.09

21.03

53.79

107.68

15.84

7.54

0.52

1.72

0.28

0.20

7.76

3.86

Average 29.55 0.44 27.68 0.85 58.52

Minimum 3.36 0.11 3.86 0.20 7.54

181.34Maximum 135.45 0.88 79.89 6.81

Standard Dev 30.79 0.24 20.88 1.32

Total 738.81 10.90 692.12 21.24
48.04

1,463.08

15.10

5.24

30.93

11.08

9.12

25.70

48.68

7.5"

3.30

29.17

3.30

124.29

29.44

729.37

KAP System

0.70

0.4'

1.60

1.60

0.33

0.72

0.11

0.38

0.5_

0.69

0.53

0.14

0.32

0.31

0.21

0.35

0.25

0.13

0.17

0.27

0.15

0.25

0.68

0.20

0.12

0.45

0.11

1.60

0.40

11.15

Compile User

187.75

70.63

30.88

9.01

102.02

292.85

10.22

144.61

141.07

227.51

28.18

30.48

123.10

137.70

69.25

39.85

55.59

12.91

75.57

33.53

14.76

71.61

76.09

12.75

6.37

80.17

6.37

292.85

74.47

2.004__11

Compile Sys

3.37

4.94

5.25

0.28

4.07

3.51

0.23

2.44

2.10

Total

239.1;

119.2;

46.0=

15.3

125.1

393.9

14.5(

178.8_

268.0C

3.33 293.2"

0.83 43.68

0.70 39.94

2.58

1.78

0.95

1.04

0.70

0.22

7.01

0.85

0.29

1.94

2.05

156.85

158.89

102.0;

69.29

71.65

18.5C

113.68

45.73

24.3;

99.50

127.5

20.970.51

0.34 10.13

2.05

0.22

7.01

1.83

F;1 _n

111.85

10.13

393.90

99.62
0 7Og 1 o

E
0

E
0

_ _ _ _ _ _ _ O _ _ _ O

h

,

______ _oo_

° _'° ° ° ° ° ° _ o o;_ o o _ o' o o _ o :

+ v

, .,- ti'3¢.D o.I 031 03 O_ C_ cO '_"
o3

_00 t'O O4 t.D _.-

r_ v

_ _ _ _ _ _'_ _ 3!_ _ _ _

o ;",,- 0 0') ',::t" I_

'P'l r_

_o

'__

+

,o o o o _ _ o o _ o,o o _ _ o _ _ o o:o o _ o o

E
0

0

_ _ _; _ _I _ _ _ _ _ _ _ _ _ _, _ _ _ _ _

E

....... i " • ° • •_°°°ooooooooooooooooo_oooo

COl I_- O O_ 03
t_31I_. O.I CO

£'0 0') 0,,I tO
CO

__0

00000

4O

Appendix C -- Performance Data

This appendix contains the following information:

Elapsed sec m total program elapsed (wall clock) execution time,

in seconds, as measured by the UNICOS "ja" utility.

CPU sec m program CPU (user) execution time, in seconds, as

measured by the "ja" utility.

System sec _ program system time, in seconds, also from "ja".

% Vectorization -- percentage of program instructions that were

vector instructions. This value is calculated in Appendix D.

MFLOPS -- millions (10"'6) of floating point operations per

second. It is calculated by dividing the total floating point

operations (recorded in Appendix A) by the elapsed time.

Sem. Wait _ semaphore wait time as reported by the hardware

performance monitor (HPM) group 1. Semaphore wait time

indicates the percentage of time CPUs spend in a "parked" state

waiting for work to become available.

Con. CPU _ average concurrent CPUs as reported by the "ja"

facility. It indicates the average number of CPUs that are

either busy in behalf of the program or idle available to do
work.

Speedup _ multiplication factor of improvement in elapsed

time over the default vectorization execution elapsed time.

Values below 1.00 indicate the performance was higher with
default vectorization.

Instructions _ total vector and scalar instructions executed, as

recorded by the HPM (group 0).

MIPS _ millions (10"'6) of instructions executed per second.

CPI m average number of clock periods per instruction, or

CPI
Elapsed time

Instructions x 6.0 ns/clock

41

$8"6

Ot"_

UU _ i- L

!1.S'91.

SS'69

1.6"91.

ZS't' t't"St'

LS'g $6"t'9

_t"£ L9"�t'

96"8 80"_t'

66";_

9"

017"_

,9"

6_'£

6L'SS

89"g9

SS'69

t'9"89

8L'OS

_O't' St," 1.t'

6t"£ 9L'Lt'

S1.'S

_6"9

69"_

98"_g

_V8E

t'6" 1.9

£8"6 1.6"91.

£L'_ 1.I." 1.9

6L_LS_'1.60"8_1.

t't'9'881.'£09'9

6_'996'8L_'9_ 9_'6L1. 0_'96

888'0S9'881.'S 98"6L 1.9"99

Ot'O'6LL't'_S

L91.'L_9'1.9g'g

1.89'$86'_L9'1.

_89'Lg8'_Og'g

6_'996'8Z_'9_

9Lt"L9t"S6S'1.1.

L_6'gL8'£1.g

688'$1._'1.8S

$96'6_6'_08

$6"886'1. |_'$99'1. 80"9S t'9'6L6'_

6t" 1.9 |_'L_ 1.t"S

L8"_S

OZ'L

L_'9

O_'L_

_0"0

9S'69 1.VO

6P'_1. t'O'O

8_'1.1. gO'O

88"L8 g9"SS 8S'1.

_9"6 SL'L1. SL'O

PO'_8 S9"Sk 9_'0

89"L_ L_'_P O_'L_

69"9L 1._'gt' 6S'_

68"8_1. £8"88 _0"0

P_'£t' 06"SL 0_'0

£O't'_L 9_'68 £VO
L9t"t'1._'�L8 gL'99L

980't't'8'S1.9'1. _6"L1.

_88'£08'9Lg 69"66

81.6'881.'9_9 98"_

t't"_g1.t'9"L 08"1._ 801.'OLt"O_S'_1.

LL'8 0_'t't' $1.9'SSS'6_8'9

99"8 8L'81. _L1.'£$1.'_'S

t't"£ 6_'9t' 06t"LS9't'6L'L

66"1._ 1.

1.96'$6£'8S9'1. SS'6S1.

88't''81.9'S 1.0"9k1.

09"L _6"1._

L9"S 98"6_

69"g 00"_9 989'1.88'ZLS'91.

S9"E 1.8"E9 E08'89S'8SS'81.

gt"8 t'S'8_ 8LS'1.E9'EL1.'t'

9_8'1.8t"$69'£

suouon_|sul

69"S

t'_'8S

81.'091.

L6"t'91.

SdO-EI_

1.8"6_

IdO Sdl_

8L'06 90"0

60"1.t' 1.VO

t'8"86 L0"0

6L'1.9 80"0

LS'S6 99"8

P6"99 1.L'L

01_'96 90"S

L8"6S $9"1.

_P'S6 $8"0

0S'_6 pt"_

SP'89 L_'g

1.8"6S

LO'l.8

$6"86

uo!lezuoloeA

£L't'

8L'O

bS'O

% oes LueIs^S

lelo lelol

uo!]e!AeG pJepuets "^eG pJepuetsSS'�t' 1.

't'LS uJnuJ!xelN uJnLu!xe

91.'S

61.'61. L
wnw!u!l,fl wnw!u!l_l

e6eJe^v e6eJe^V

80"8 (euou)

Z6"O 1. (euou)

81.'6 (euou)

9_'09 (euou)

L_'9_ (euou)

6l_'Lt' (euou)

06"_ _t' (euou)

6S'8_ (euou)

91.'S (euou)

L 1.'_ I. (euou)

98"6 (euou)

t,t"81. (euou)

1.E:'6_ (euou)

£_';_ (euou)

8_'01. (euou)

_g't'LS (euou)

1._'8t' 1. (euou)

P V8L_ (euou)

1.0"/_8 (euou)

at"SZ (euou)

90" 1.61. (euou)

68"Z9;_ (euou)

9t"$6_ (euou)

96"$9 (euou)

90"9_ 1. (euou)

o_S nd9 SUO!|dO

dVH _o dd| oN -- sunH uo!]onpoJ d

(34H I

HOVEl1

:lOIdS

Z/O3dS

NV_O0

EX_

_SO]:

VN(]8

C]_OEIV

_QV

NEJ_ISVN

06dO-l:l_l

0 ISVN

60SVN

80SVN

LOSVN

90SVN

£OSVN

t'OSVN

80SVN

_OSVN

_lJeLUqOUe8

£_

8_

L_

O_

6L

eL

LL

9L

t'L

£L

_L

L_

OL

6

8

L

9

g

t'

8

L

C_

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Dedicated Runs -- No fpp or KAP

Options

(none)

(none}

(none}

(none)

(none}

(none)

(none}

(none}

(none)

(none}

(none}

(none}

(none)

(none)

(none)

(none)

(none)

(none)

(none)

(none}

(none)

(none)

(none}

(none)

(none}

Elapsed Sec

126.16

CPU Sec System Sec

123.49 0.84

84.50 84.17 0.06

298.24 294.13 3.48

265.75 265.42 0.06

% Vectorization

93.95

.81.07

59.81

63.45

MFLOPS

165.93

164.33

44.41

54.02

Instructions MIPS

3,695,431,826 29.93

4,181,431,652 49.68

18,610,477,409 63.27

16,576,062,218

192.03 189.28 2.44 92.50 147.13 5,613,224,332

75.35 74.41 0.52 95.42 160.43 1,674,392,527

39.15 36.43 0.62 59.37 36.41 1,794,662,049

285.73 276.60 3.52 96.40

142.35 140.32 1.63

574.71 564.14 6.96

7.59 7.32 0.0;

86.94

Average

Minimum

Maximum

Standard Dev.

Total

95.57

61.79

93.84

41.09

90.73

89.26

75.90

21.71 21.44 0.01

29.87 29.11 0.06

13.73 13.21 0.19

177.67 5,255,976,111

62.45

29.66

CPI

5.57

3.35

2.63

2.67

5.62

22.5O 7.41

49.27 3.38

19.00 8.77

10.33 9.36 0.15

12.52 12.13 0.03

124.19 6,343,683,068 45.21 3.69

135.18 12,598,056,246 22.33 7.46

30.37 374,086,471 51.10 3.26

102.70 379,414,041

1,819,013,753

381,938,1411

306,756,768

589,774,742

17.64

163.94

113.95

17.70

62.49

28.91

32.77

48.6242.92

9.42

2.67

5.76

5.09

3.43;

5.53 5.18 0.08 88.33 116.08 217,851,591 42.06 3.96

190.82 190.06 0.04 43.21 20.46 9,607,732,728 50.55 3.30

413.59 409.14 3.88 44.27 29.40 26,286,893,010 64.25 2.59

48.63 48.29 0.020

26.09 25.75 0.03

3,381,976,139 70.03 2.38

1,675,154,322 65.05 2.56

3,366,112,528 56.69 2.9z

387,639,038 42.93 3.88

537,079,811 49.73 3.35

525,834,530 66.39 2.51

45.65

17.75

55.63

11.23

12.49

69.56

5,047,226,202 45.70

31.47

9.95

32.05

6.08

7.48

52.37

126,180,655,051

61.41 59.38 0.77

66.61 79.46

9.50 9.03 0.02

11.34 10.80 0.03

1,986.57

8.27 7.92 0.11

118.20 116.26 1.02

lr665.21

17.70

70.03

16.32

1,142.582r906.50

5.53 5.18 0.01 11.23 6.08 217,851,591

574.71 564.14 6.96 96.40 177.67 26,286,893,010!

148.06 145.86 1.74 27.21 60.81 6,749,482,650

2r954.91 25.56

4.31

2.38

9.42

2.05

t07.66

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Average

Minimum

Maximum

Standard Dev.

Total

Dedicated Runs -- Vector fpp

Options Elapsed Sec

125.84

82.78

242.79

227.56

176.27

76.88

38.12

289.47

157.95

587.48

8.11

20.99

25.67

13.59

10.7z

12.16

5.44

228.34

483.88

39.10

26.59

61.96

9.50

11.20

8.46

118.83

5.44

587.48

153.70

2_970.87

CPU Sec

121.43

82.57

System Sec

1.81

0.06

% Vectorization MFLOPs

94.22 166.36

81.64 167.741

239.74 2.93 71.71

224.77 2.67 73.48

175.91 93.22

73.34

36.44

273.61

156.93

558.78

7.75

20.59

24.54

12.87

9.35

11.76

5.07

227.00

433.64

0.20

1.9_

0.89

4.32

0.72

14.88

0.17

0.26

0.34

0.30

0.19

0.04

0.08

1.12

6.86

0.02

0.28

38.83

26.00

61.06 0.26

9.14

10.52

7.81

113.98

5.07

558.78

0.12

0.15

0.09

1.63

0.02

14.88

3.21

40.64

144.54

2r849.45

99.02

86.86

96.43

84.69

95.48

64.78

94.26

44.75

95.05

89.24

75.83

88.45

43.18

43.72

52.33

17.84

59.27

11.17 i

12.5_

69.79

69.56

11.17

99.02

27.31

lt738.94

Speedup

1.00

1.02

54.55 1.23

63.09 1.17

160.29 1.09

157.25 0.98

37.39 1.03

175.37 0.99

Instructions

3,563,031,465i

4,066,333,343

13,058,132,042

11,947,308,904

5,109,816,586

1,644,641,710

1,794,704,563

5,162,825,462

111.921 0.90 7,435,175,677

132.24 0.98 12,497,031,504

28.43 0.94

1.03

1.16

106.23

20.53

165.63 1.01

109.60 0.96

44.19 1.03

118.00 1.02

17.10

25.13

0.84

0.85

1.24

0.98

0.99

1.00

39.15

9.76

31.77

6.08

7.57 1.01

51.19 0.98

80.26

353,053,404

355,347,924

1,486,097,494

6.08

175.37

60.70

2,006.56

320,141,448

302,240,411

561,376,804

212,559,938

11,611,645,442

27,551,228,485

2,451,186,973

1,670,996,886

3,235,155,583

386,529,649

529,700,869:

525,808,977

1.02 4,713,282,862

0.84 212,559,938

1.24 27,551,228,485

0.10 6,370,973,010

25.43 117.832.071.543

MIPS CPI

29.3_

49.25

54.47

53.15

29.05

22.42

49.25

18.87

5.6_

3.3_

3.0_

3."

5.7"

7.4:

3.3E

8.83

47.38 3.52

22.36 7.45

45.58 3.66

17.25

60.55

24.88

32.31

9.66

2.75

6.70

5.16

47.75 3.49

41.94 3.97

51.15 3.26

63.53

63.13

64.26

52.98

42.28

2.62

2.64

2.59

3.15

3.94

50.37 3.31

67.33 2.48

44.03 4.44

17.25 2.48

67.33

15.35

1 1£1D RR

9.66

2.07

11N O0

L_

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

Dedicated Runs -- fpp + 4 CPUs

Options I Elapsed Secl CPU Sec Sys Sec

66.28 139.61 3.14

64.84 108.49 0.40

233.78 240.37 11.63

Wd -e6ijt

% Vector MFLOPS 3em. Wait Con. CPU

92.83 315.86 43.95 3.99

79.61 214.15 57.30 3.99

71.68 56.65 73.93 4.00

218.53 225.61 2.89 73.47 65.70 74.06 3.99

162.08 227.86 3.85 91.40 174.32 64.42 3.99

26.20 82.43 1.11 = 94.07 461.41 18.08 3.98

36.97 36.80 0.18 57.69 38.56 74.90 3.96

112.86 286.95 1.11 96.05 449.81 27.48 3.99

68.14 174.67 0.35 83.25

239.90 623.85 1.83 94.28

7.75 8.25 0.13 36.21

14.38 22.57 = 0.30 93.37

Wd-e46jt

259.44 35.35 3.99

323.83 30.99 3.99

29.75 72.08 4.00

155.06 59.82 4.00

32.40 29.10 0.45 40.03 16.27 74.69 3.98

5.88 15.62 0.19 92.48 382.80 26.75 3.98

9.90 10.58 0.39 87.78 118.90 71.12

10.99 12.93 0.07 74.03 48.90 68.16

2.32 5.59 0.06 88.00 276.70 27.80

Speedup
1.901

1.30

1.28

1.22

3.92 1.04

3.97

3.98

193.81 193.54 2.51 43.01 20.15 74.9" 3.99

448.10 462.90 6.49 39.39 27.13 86.94 3.99

60.50 65.63 0.31 44.17 25.30 72.48 3.99

26.64 26.2,_ 0.16 17.71 9.74 74.97 3.99

62.05 67.12 0.86 55.51 31.72 72.06 3.99

11.05 9.14 0.19 10.99 5.23 74.94 3.98

11.99 10.59 0.18 12.39 7.07 74.84 3.98

12.76 12.46 0.06 64.80 33.94 74.89 3.99

Average 85.60 123.96 1.55 65.37 141.93 60.28 3.98

Minimum 2.32 5.59 0.06 10.99 5.23 18.08 3.92

Maximum 448.10 623.85 11.63 96.05 461.41 86.94 4.00

107.94 155.65 2.61 27.82

2_140.10 3t098.91 38.85 lr634.20

Standard Dev.

Total
149.68 20.41

3,548.371 1 506.91
0.02

99.60

Instructions

4,450,353,494

5,616,117,144

13,076,093,555

11,972,607,259

1.18 7,539,145,719,

2.88 2,168,782,914

1.06 1,822,418,496

2.53 5,713,537,950

2.09 8,311,801,380

2.40 15,384,866,192

MIPS

31.88

51.77

54.40

53.07

CPI

5.2

3.2

3.01

3.1,

0.65 235,464,175 19.91 2.29

2.88 30,380,592,439 72.63 8.37

0.65 6,865,339,807 14.29 1.70
35.28 132_199 _R7 RRK 1 1_ _A 4hA At

0.95 531,551,600 50.19 3.32

0.65 647,555,924 51.97 3.21

1.41 5,287,691,512 45.15 4.18

0.98 384,357,322 46.59 3.5E

1.51 450,718,126 19.97 8.3!

0.92 1,764,828,201 60.65 2.75

2.34 524,491,880 33.58 4.96

344,273,495 32.5z 5.12

1.14 619,341,073 47.90 3.48

2.38 235,464,175 42.12 3.96

0.98 9,675,074,199 49.99 3.33

0.92 30,380,592,439 65.63 2.5,

0.80 4,767,023,208 72.63 2.29

0.98 1,698,142,883 64.72 2.58

0.99 3,724,592,390 55.49 3.0(

0.86 388,556,787 42.49 3.92

49.52 3.3,

19.91 8.3,

47.59 3.5(

24.66 6.7__

33.09 5.0.

26.31 6.3;

O_

1
2
3
4
5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Dedicated Runs

Options

Wd-e6ijt

Wd-e46jt

Average

Minimum

Maximum

Standard Dev.

Total

-- fpp + 8 CPUs

Elapsed Sec!

59.83

71.17

230.13

217.07

158.37

17.79

36.99

76.44

54.55

CPU Sec Sys Sec

149.81 7.36

130.69 7.22

240.40 6.29

225.69

248.5"

85.17

36.87

290.01

189.16

3.87

9.4 _

2.15

0.80

4.37

4.04

198.77 679.04 72.0

7.53

13.56

30.51

4.83

10.50

10.64

2.19

226.66

446.47

8.35 0.42

% Vector

93.00

80.28

71.88

73.47

91.37

94.37

57.93

95.98

83.53

94.10

45.15

23.63 0.59 97.18

29.41 2.39 39.06

16.98 2.22 91.63

59.83

26.88

62.35

11.13

11.95

12.92

12.72 3.26

1.30

1.57

3.08

12.20

1.95

0.68

15.09

0.39

0.23

0.35

13.28

6.18

226.58

464.38

66.53

26.66

68.68

9.15

10.6'

12.49

82.36 130.84 6.53

2.19 6.18 0.23

446.47 679.04 72.01

107.04 164.69

2r059.00 3r270.98

14.18

163.25

87.73

73.90

87.54

43.02

39.40

21.00

17.70

55.51

11.11

12.42

64.76

64.92

11.11

97.18

28.78

lr623.02

MFLOPS

349.91

195.' 0

57.55

66.14

178.40

679.56

38.54

664.12

324.07

390.96

30.62

164.43

17.27

466.02

112.11

50.50

293.12

17.23

27.23

25.58

9.66

31.57

5.19

7.09

33.52

169.42

5.19

679.56

203.63
4,235.50

Sem. Wait

65.83

76.49

86.90

86.95

79.98

35.05

87.40

47.13

55.97

53.74

85.76

77.81

87.08

47.49

82.96

83.58

52.27

87.45

86.94

85.96

87.39

85.29

87.39

87.3z

87.38

75.50

35.05

87.45

16.52

1,887.53i

Con.CPU

7.94

7.94

7.99

7.88

7.95

7.93

7.97

7.95

7.93

7.85

Speedup

2.11

1.19

1.30

1.22

1.21

4.24

1.06

3.74

2.6"

2.89

7.93 1.01

7.96 1.60

7.92 0.98

7.43

7.5;

7.87

7.60

7.89

7.97

7.77

7.95

7.81

7.95

2.84

0.98

1.18

2.53

0.84;

0.93

0.81

0.97

0.98

0.85

7.90 0.95

7.95 0.64

7.87 1.59

7.43

7.99

0.14

196.75

Instructions MIPS

4,894,628,874 32.67

6,138,452,254 46.97

13,078,731,691

11,970,172,129

8,509,563,117

2,394,873,581

1,846,351,759

5,822,305,676

8,969,971,913

17,076,106,273

401,511,486

497,264,039

1,772,769,852

578,472,579

411,352,346

625,837,071

254,121,477

11,666,519,400

30,427,721,104

4,784,581,979

1,699,517,361

3,789,607,607

390,132,864

537,172,035

647,029,973

54.40

53.04

34.24

28.12

50.08

20.08

47.42

25.15

48.09

21.04

60.28

34.07

32.34

47.13

41.12

51.49

65.52

71.92

63.75

55.18

42.63

50.63

51.80

45.175,567,390,738

0.64 254,121,477 20.08

4.24 30,427,721,104 71.92

0.99 7,059,440,113 13.8_

39.66 139.184_7RR 44n I l_Q 1_

CPI

5.11

3.5;

3.0_

3.1

4.81

5.9_

3.3:

8.3(

3.51

6.63

3.47

7.92

2.76

4.89

5.15

3.54

4.05

3.24

2.54

2.32

2.61

3.02

3,9"

3.29

3.22

4.13

2.32

8.30

1.61

--.4

1
2
3
4
5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

Dedicated Runs -- Vector KAP

Average

Minimum

Options

mvc=-I

Maximum

Standard Dev.

Total

Elapsed Sec

123.75

79.37

194.59

186.42

183.88

74.63

39.19

296.69

140.82

583.51

7.15

21.81

29.22

13.69

10.49

CPU Sec

121.49

77.55

192.04

183.94

182.97

74.16

36.4'

277.30

140.32

564.62

6.88

20.99

28.08

13.16

9.43

13.24 12.31

5.6; 5.23

195.47 192.81

463.90

48.77

26.99

65.69

9.59

11.58

7.99

113.36

5.62

583.51

147.93

2r834.05

459.44

48.09

26.31

63.98

9.15

10.59

7.62

110.59

5.23

564.62

144.15

2t764.87

System Sec

0.39

0.96

2.28

2.20

0.19

0.13

0.89

3.79

0.05

7.10

0.01

0.26

0.37

0.20

0.17

0.18

0.08

2.29

3.90

0.03

0.35

0.84

0.02

0.15

0.11

1.08

0.01

7.10

1.70

26.92

% Vectorlzatior

94.23

• 97.62

67.54

70.08

92.88

95.55

59.36

96.53

87.22

MFLOPS

169.17

174.95

68.06

77.01

153.66

161.99

36.37

171.10

125.54

95.46 133.14

62.91 32.24

98.87 102.23

43.29

93.89

89.21

75.07

89.48

43.25

43.69

46.08

17.7z

52.57

11.51

12.41

69.36

68.23

11.51

98.87

28.07

1,705.80

18.04

Speedup

1.02

1.06

1.53

1.43

1.04

1.01

1.00

0.96

1.01

0.98

1.06

1.00

1.02

164.42 1.00

112.21 0.9_

40.59 0.95

114.22

19.97

26.21

31.38

9.62

29.97

6.02

7.32

54.20

81.59

6.02

174.95

61.08

2.039.64

0.98

0.98

0.89

1.00

0.97

0.93

0.99

0.98

1.0_1

1.03

0.89

1.53

0.14

25.824

instructions

3,557,493,168

2,779,827,595

11,907,241,526

11,095,838,967

5,338,716,339

1,631,631,554

1,795,591,200

5,148,504,508

6,223,383,825

12,631,359,159

341,329,039

343,023,909

1,691,952,728

374,596,228

309,702,934

598,894,718

MIPS

29.28

CPI

5.6,

35.85 4.6t

62.00

60.32

29.18

22.00

2.6'

2.7;

5.7 ¸

7.51

49.32 3.38

18.57 8.98

44.35 3.76

22.37

49.61

16.34

60.25

7.45

3.3(

10.20

2.77

28.46 5.86

32.84 5.07

48.65 3.43

200,539,712 38.34; 4.35

9,637,958,123 49.99 3.33

28,925,510,173 62.96 2.65

3,346,770,828 69.59

63.67

2.39

2.6.¢1,675,232,033

3,812,666,846

379,764,505

537,366,806 3.28

494,019,724 64.83 2.57

4,591,156,646

200,539,712

28,925,510,173

6,390,163,288

59.59 2.80

41.50 4.02

50.74

44.43

16.34

114.778.916147

69.59

16.28

1 11N R_

4.45

2.39

10.20

2.14

111 _

oo

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

Dedicated Runs -- KAP + 4 CPUs

Options Elapsed Secl CPUSec Sys Sec % Vector MFLOPS Sem. Wait Con.CPU

93.67 164.61 6.43 90.08 223.50 53.46 3.98

mvc=-I

80.54 92.34 4.29 85.36 172.41 70.55 3.99

192.47 193.66 9.74 67.51 68.81 74.48 3.98

182.38 184.08 3.35 70.02 78.72 74.62 3.98

197.78 417.21 7.37 80.65 142.85 46.49 3.99

25.98 81.28 1.74 94.25 465.38

38.48 38.00 1.89 58.34 37.04 74.49

11 5.62 314.49 0.99 94.91 439.07 21.95

71.16 172.55 2.87 83.92 248.43 37.6'

18.20 3.97

318.37 605.12 7.03 94.65 244.02 51.62 3.99

7.34 7.19 0.38 62.23 31.40 74.22 3.99

12.23 30.87 0.05 88.16 182.31 33.20 4.00

x=a

x=a exd=-I

x=a exd=-I

29.25 37.34 0.67 40.20 18.02 66.85

5.46 15.99 0.16 90.15 412.25 21.11

9.88 10.31 0.51 88.08 119.14 71.85

13.27 13.27 0.08 73.82 40.49 73.24

2.44 5.87 0.13 88.0' 263.09 27.44

174.13 173.89 2.05 43.96 22.42 74.92

444.66 462.81 3.93 42.96 27.34 73.89

43.98 49.09 _ 0.09 45.90

0.14 17.58

1.23

26.5,_ 26.20

53.14 69.94

34.80

9.78

51.22 37.04

11.53 5.55

12.31 7.58

69.18 54.48

10.40 9.20 0.17

11.18 10.82 0.58

7.95 7.69 0.06

71.85

74.95

66.55

74.75

74.67

74.73

Speedup

1.35

Instructions

5,930,025,083

1.05 3,342,566,243

1.55 11,925,369,712

1.46 11,124,563,791

0.97 19,438,367,000

2.90 2,028,820,284

3.93 1.02 1,845,614,697

3.99 2.47 7,315,700,575

3.98 2.00 7,730,268,572

1.81 14,664,327,377

1.03 350,840,048

MIPS

36.03i

36.20

61.58

60.43

46.59

24.96

48.57

23.26

44.80

24.23

48.83

1.78 665,159,280 21.55

3.98 1.02 2,134,794,428 57.17

3.96 2.51 557,385,501 34.86

3.90 1.05 336,894,643 32.68

3.98 0.94 = 632,521,942 47.67

3.92 2.27 230,860,813 39.33

3.99 1.10 8,193,825,297 47.12

3.99 0.93 32,781,095,672 70.83

4.00 1.11 3,404,343,424 69.35

4.0(0.98 1,699,820,166 64.88

3.97 1.16 4,092,097,126 58.51

3.97 0.91 386,415,544 42.00

3.97 1.01 543,326,282 50.21

3.99 1.04 497,967,065 64.76

Average
Minimum

86.73 127.75

2.44 5.87

IMaximum 444.66 605.12

Standard Deviat 110.63 162.23

2.24 65.80 135.44 59.11

0.05 11.53 5.55 18.20

9.74 94.91 465.38 74.95

2.76 26.34 141.56 20.46

3.98 1.42 5,674,118,823 46.26

3.90 0.91 230,860,813 21.55

4.00 2.90 32,781,095,672 70.83

0.02 0.59 7,639,713,591 14.76
Total 2,168.29 3r193.81

CPI

4.6;

4.6

2.7_

2.7,

3.5_

6.6_

3.4,_

7.1E

3.72

6.88

3.4_

7.73

2.92

4.78

5.10

3.50

4.24

3.54

2.35

2.40

2.57

2.8E

3.97

3.32

2.57

4.06

2.35

7.73

1.57

1R1 _O55-941 lr644-99 3t385.93 1,477.69 99.39 35.41 141.85:__970_RRR 1 1RR .'_Q

4:=

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

DedicatedRuns--KAP+8CPUs
Options ElapsedSec CPUSec SysSec %Vector MFLC)PSSem.Wail Con.CPU

87.14 183.02 8.14 89.34 240.24 71.68

80.32 103.31 2.98 86.17 172.88 83.70

190.04 193.13 3.21 67.51 69.69 87.24

182.55 184.25 4.98 70.02 78.65 87.30

220.45 620.33 29.10 82.15 128.16 63.87

17.8; 85.38 1.96 93.64 678.54 = 35.49

38.72 37.46 9.54 58.24

80.5' 321.7z 6.59 94.84

62.73 196.64 5.13 84.72

288.86 636.68 9.58 94.73

mvc=-I 7.19 7.10 0.64

11.82 34.39 1.65

30.67 43.78 2.57

5.66 18.10i 0.93

9.97 10.44 2.44

x=a

x=a exd=-I

x=a exd=-I

36.82 86.9"

630.54 41.53 7.94

Speedup Instructions MIPS

7.96 1.45 5,871,825,309 32.08

7.97 1.05 3,421,020,545 33.11

7.98 1.57 11,923,756,822 61.74

7.98 1.46 11,124,783,685 60.38

7.9z 0.87 29,627,838,873 47.76

7.94 4.23 2,163,732,423 25.34

7.66 1.01 1,872,342,368 49.98

281.81 59.89 7.94

268.95 71.51 7.97

62.34 32.06 86.91 7.911

89.52 188.64 61.67 7.90

41.92 17.18 80.59 7.92

91.11 397.68 43.16 7.78

87.98 118.06 85.19 7.63

12.92 14.03 0.56 74.56 41.59 85.87 7.92

2.32 6.35 0.31 87.09 276.70 53.98 7.62

191.22 190.89 3.93 43.23 20.42 87.46 7.98

442.04 464.47 13.36 40.51:

43.77 49.56 1.08 45.90

26.77 26.23 1.45 17.60

51.23 73.13 3.14 51.11

27.51 86.79 7.97

34.97 85.51 7.79

9.70 87.42 7.95

38.42 81.77 7.93

5.97 87.25 7.929.67 9.30 0.29 11.54

11.09 10.76 0.69 12.15 7.65 87.28 7.88

8.34 7.75 0.39 69.10 51.93 87.20 7.90

3.55 7,368,582,541 22.90

2.27 8,166,351,745 41.53

1.99 14,271,485,480 22.42

1.06 353,024,231 49.72

1.84 721,854,356 20.99

0.97 2,159,690,483 49.33

2.43 599,139,451 33.10

1.04 334,025,424 31.99

0.97 646,356,009 46.07

2.38 247,075,312 38.91

1.00 9,645,861,1 27 50.53

0.94 30,861,960,708 66.45

1.11 3,410,150,233 68.81

0.97 1,699,744,111 64.80

1.20 4,1 59,618,327 56.88

0.98 386,254,885 41.53

1.02 540,857,234 50.27

0.99 498,528,880 64.33

CPI

5.1'.

5.0:

2.71

2.7(

3.4. _

6.5_

3.3;

7.2_

4.0

7.4 _

3.3_

7.94

3.38

5.03

5.21

3.62

4.28

3.30

2.51

2.42

2.57

2.93

4.01

3.32

2.59

!Average 84.55 141.13 4.59 65.88

Minimum 2.32 6.35 0.29 11.54

Maximum 442.04 636.68 29.10 94.8z

Standard Dev. 109.54 185.21 6.17 26.50

Total 2r113.82 3r528.22 114.65 1,647.04

154.19 75.09 7.89

5.97 35.49 7.62

678.54 87.46 7.98

185.50 16.66 0.11

3r854.761 1,877.17 197.28

1.53 6,083,034,422 45.24

0.87 247,075,312 20.99

4.23 30,861,960,708 68.81

0.86 8,371,494,707 14.75

38.34 152.075.860.562 1.130__6

4.17

2.42

7.94

1.64

104 9R

L_
C_

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

Dedicated Runs -- Vector KAP + fpp

Average

Minimum

Options

mvc=-I

Maximum

Standard Dev.

Total

Elapsed Sec

122.66

76.84

CPU Sec

121.49

76.68

152.55 152.39

143.88

176.64

74.64

143.70

176.25

73.28

37.37 36.48

284.40

138.30

569.41

8.26

23.03

25.63

13.23

10.07

274.93

137.61

559.45

7.89

20.27

24.91

12.93

9.45

12.93 12.56

5.28 5.08

229.12

457.89

43.90

26.32

226.28

452.08

43.31

System Sec % Vectorization MFLOPS

0.38 94.20 170.67

0.06 _ 88.30

0.05 80.20

0.06

0.16

1.01

0.17

3.66

0.06

1.30

0.10

0.02

0.03

0.0_

0.06

0.04

0.01

2.73

5.42

0.51

25.37 0.32

58.67 56.53 0.77

9.74 9.29 0.13

10.56

7.50

11.12

7.78

107.05

0.14

0.02

0.69108.79

5.28 5.08 0.01

569.41 559.45 5.42

144.58 142.36

2_676.26

1.33

17.292_719.67

81.77

93.20

95.52

59.36

96.56

87.73

95.47

63.76

94.71

45.94

95.02

89.09

74.58

89.60

43.25

44.09

45.06

16.95

60.24

11.51

12.45

69.62

69.13

11.51

96.56

27.68

lr728.19

180.71

86.82

99.78

159.95

161.96

38.15

178.50

127.82

136.43

Speedup

1.03

1.10

1.96

1.85

1.09

1.01

1.05

1.00

1.03

1.0

27.91 0.92

96.82 0.94

20.56 1.17

170.12 1.04

116.92 1.03

41.56 0.97

121.53 1.05

17.04 0.83

26.55 0.90

34.87 1.11

9.86 0.99

33.55

5.93

7.62

1.05

0.98

1.02

Instructions

3,551,607,414

2,716,546,579

7,177,256,270

6,492,756,485

5,147,965,138

1,608,089,560

1,794,936,446

5,048,668,466

5,937,511,553

12,528,177,948

357,710,552

317,319,042

1,484,201,381

368,551,170

304,144,306

606,841,480

194,965,998

11,629,282,133

29,087,392,727

3,043,017,734

1,671,723,407

3,016,712,155

378,857,703

55.67 1.06

85.09 1.09 4,219,529,818

5.93 0.83 194,965,998

180.71 1.96

0.26

27.16

62.80

2,127.31

531,273,255

492,736,541

29,087,392,727

6,207,407,322

105.488.245_44A

MIPS

29.23

35.43

47.10

45.18

29.21

21.95

49.20

CPI

5.71

4.71

3.5'

3.6'_

5.71

7.5C

3.3 c

18.36 9.0_

43.15 3.86

22.39 7.4_

45.31 3.68

15.65 10.65

59.58 2.80

28.49

32.20

48.32

38.41

51.39

64.3"

5.85

5.18

3.45

4.34

3.24

2.59

70.27 2.37

65.90 2.53

53.36 3.12

40.78 4.09

50.32 3.31

65.70 2.54

42.85 4.58

15.65 2.37

70.27 10.65

15.61

1 n71 _4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

Dedicated Runs -- KAP + fpp + 4 CPUs
i

Options Elapsed Sec CPU Sec

93.45

82.02

145.62

135.93

196.76

25.19

Average

Minimum

Maximum

37.13

Wd-e6ijt 101.43

mvc=-I

Wd-e46jt

x=a

x=a exd=-I

x=a exd=-I

Standard Dev.

164.63

128.96

152.97

143.10

420.17

81.85

36.84

315.95

71.51 172.16

232.93 633.02

8.05

11.83:

28.46

5.50

9.65

10.62

2.54

193.61

464.96

55.19

26.66

53.16

9.58

10.85

12.51

81.01

2.54

464.96

104.75

8.40

30.85

36.74

15.89

10.75

13.59

5.84

193.36

483.48

60.90

26.28

69.97

9.23

10.55

12.27

129.51

5.84

633.02

166.69
Total 2r025.13 3_237.74

Sys Sec

4.42

1.01

7.24

1.76

7.05

0.47

0.61

2.19

1.8z

6.82

0.16

0.05

0.12

0.23

0.45

0.09

0.12

2.36

7,0'

0.73

0.13

1.46

0.08

0.19

0.06

1.87

0.05

7.24

2.51

46.66

% Vector

89.98

77.11

80.3

81.76

82.07

93.81

58.18

94.84

84.86

93.65

61.79

90.40

44.39

91.01

87.79

72.40

88.02

43.09

39.31

28.74

29.06

51.32

11.54

12.34

63.05

66.02

11.54

94.84

26.58

lr650.61

MFLOPS Sem. Wai Con. CPU

224.03 53.50 3.99

169.30 60.34 4.00

90.95 73.35

105.62 73.53

143.60 45.67

479.91 16.22

38.39 74.83

500.50 15.45

247.20 37.65

333.52

28.64

188.45

3.99

4.00

4.00

3.99

3.99

3.99

3.99

Speedup

1.35

1.03

2.05

Instructions

5,981,392,607

6,129,156,778

7,215,251,166

1.96 6,503,564,817

0.98 19,527,987,464

2.99 2,050,772,349

1.05 1,823,411,916

30.47 3.99 2.47

72.65 3.99 0.9z

33.32 4.00 1.83

18.52 66.68

409.25 21.64

121.97 70.44

50.60 67.11i

252.73 26.34

20.17 74.91

26.15 73.88

27.74 72.16

3.99

3.97

3.96

3.98

3.98

2.82 7,366,445,526

1.99i 7,891,149,002

15,760,072,541

394,432,649

715,259,371

1.05 2,193,629,364

2.50 574,095,058

1.07 351,565,420

1.18 656,131,985

2.18 228,372,936

3.99 0.99

3.99 0.89

3.99 0.88

4.00 0.98

3.97 1.16

3.99 0.99

3.97 1.05

3.99 0.66

3.991 1.48

3.96 0.66

9.74 74.98

37.03 66.51

6.03 74.91

7.81 74.82

34.62 74.83

142.90 57.05

6.03 15.45

4.00500.50 74.98

151.81 21.46

3,572.46 1,426.19l

9,693,099,076

36,380,696,712

4,288,154,318

1,696,888,355

4,121,690,901

380,709,730

533,449,068

646,015,236

5,724,135,774

228,372,936

2.99 36,380,696,712,

0.01 0.69

99.69 37.02l
8,076,130,383

143.103_394 R4R

MIPS

36.33

47.53

47.17

45.45

46.48

25.06

49.49

23.32

45.83

24.90

46.95

23.19

59.7

36.12

32.71

48.29

39.10

50.13

75.25

70.41

64.58

58.90

41.26

50.57

52.65

45.66

23.19

75.25

13.86

CPI

4.5,.

3.5

3.5;

3.6,

3.5,_

6.61

3.3;

7.15

3.6,

6.69

3.55

7.19

2.79

4.61

5.09

3.45

4.26

3.32

2.21

2.37

2.58

2.83

4.04

3.30

3.17

4.05

2.21

7.19

1.4_

tnt t_

t_

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

Dedicated Runs -- KAP + fpp + 8 CPUs

Options Elapsed Sec' CPU Sec Sys Sec % Vector MFLOPS Sem. Wait

86.53 181.62 9.55 88.75 241.94 71.78

80.07 147.22 6.89 77.92 1.73.42 76.54

Average

Minimum

Maximum

142.81 153.07 2.07 80.12 92.74 86.54

135.49 143.89 2.80 81.76 105.96 87.64

216.66 624.82 30.89 80.57 130.41 62.77

17.14 85.27 2.25 93.33 705.44 32.87

37.23 36.96 1.48 58.03 38.29 87.39

Wd-e6ijt 73.72 323.70 8.25 94.06 688.64 32.93

63.94 196.50 4.25 84.87 276.48 59.83

191.08 686.12 13.44 93.87 406.56 53.73

mvc=-I 8.29 8.86 0.4" 60.19 27.80 85.93

Wd-e46jt

x=a

x=a exd=-I

x=a exd=-I

Standard Dev.

Total

11.68 34.32 1.01 90.27 190.88

29.01 43.07 2.79 43.75 18.16

4.42 17.92 0.47 92.18 509.23

9.85 12.03 0.49 87.85 119.47

10.70 13.87 0.6' 73.07 50.22

2.70 6.34 0.3" 87.63 237.75

228.71 228.25 3.47 43.10 17.07

461.60 483.38 12.39 38.77 26.34

54.42 61.47 0.97 28.74 28.13

26.85 26.3 1.18 17.63 9.67

51.46 73.39 3.97 51.37 38.25

9.77 9.20 0.32 11.55 5.91

10.93 10.55 0.50 12.34

12.57 12.31 0.29 63.08

Cor_. CPU Speedup Instructions

7.951 1.46 7,087,213,185

7.94 1.06 6,888,484,712

7.99 2.09 7,220,802,923

7.98 1.96 6,503,522,836

7.94 0.89 29,859,470,279

7.94 4.40 2,328,487,813

7.91 1.05 1,846,248,635

7.92 3.88 7,552,234,073

7.95 2.23 8,943,395,138

7.95 3.01 16,024,132,383

7.93 0.92 406,317,275

61.85 7.93 1.86 872,834,131

80.38 7.93 1.03 2,458,684,732

42.99 7.76 3.11 670,856,926

83.66 7.66 1.05 396,535,389

83.08 7.91 1.17 667,539,851

53.37 7.82 2.05 235,745,981

87.74 7.98 0.83 11,682,840,963

86.84 7.97 0.90 32,121,690,951

85.75 7.98 0.89 4,286,007,671

87.43 7.97 0.97 1,696,380,388

81.73 7.90 1.19 4,089,517,130

87.41 7.96 0.97 383,038,352

7.76 87.29 7.92 1.04 532,188,019

34.45 87.34 7.96 0.66 646,602,260

MiPS

39.02

46.79

47.17

45.20

47.79

27.31

49.95

23.33

45.51

23.35

45.88

25.43

57.09

37.45

32.96

48.13

37.18

51.18

66.45

69.73

64.48

55.72

41.63

50.44

52.53

79.11 144.82 4.44 65.39 167.24

2.70 6.34 0.29 11.55 5.91
73.39 7.92 1.63 6,216,030,880

32.87 7.66 0.66 235,745,981
461.60 686.12 30.89 94.06 705.44

104.93 192.29 6.71 27.31 205.76

1_977.63 3r620.44 111.06 lr634.79 4,180.98

87.74 7.99 4.40 32,121,690,951

18.03 0.07 1.01 8,503,782,358
1,834.81 198.05 40.64 155.400.771_R

45.27

23.33

69.73

12.63

1 1_1 71

CPI

4.2,

3.5_

3.5:

3.6_

3.4!

6.1(:

3.34

7.14

3.66

7.14

3.63

6.55

2.92

4.45

5.06

3.46

4.48

3.26

2.51

2.39

2.58

2.99

4.00

3.30

3.17

4.03

2.39

7.14

1.37

1Nn _Q

Appendix D m Vectorization Data

This appendix contains the calculation of the percent vectorization

reported in Appendix C. Block memory reference counts come from

the hardware performance monitor (HPM) group 2. All other values

come from HPM group 3. Group 3 measurements were obtained with
av___[1disabled.

Block memory (a) -- block memory transfers (vector loads and
stores).

Vector I+L (b) w integer and logical vector instructions.

Vector Float (c) -- vector floating point instructions (additions,

multiplications and reciprocals).

Jump/Special (d) -- branch, conditional, and special instructions.

Scalar FU (e) _ scalar functional unit instructions.

Scalar memory (f) _ scalar register load and store instructions.

% "Vectorization _ percent of program instructions that were

vector instructions, calculated by

% Vectorization = 100
a+b+c

a+b+c+d+e+f

Avg Len-I+L _ average vector length of all integer/logical
vector operations.

Avg Len-Float -- average vector length of all floating point

vector operations.

53

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

!8
19

2O

21

22

23

24

25

No fpp or KAP

NaMe Block Memory Vector I+L Vector Floa Jump/Special Scalar FU Scalar Memor, _, Vectorizatio

NAS01 22,605.84 1,329.68 20,970.61 174.16 2,671.86 44.32 93.95

NAS02 6,825.11 1,051.12 8,162.30 134.02 3,210.56 399.56 81.07

NAS03 11,473.48 210.99 12,069.70 189.62 15,123.91 650.51 59.81

NAS04 11,527.01 10.15 13,279.80 130.65 13,580.77 583.98 63.45

NAS05 28,135.01 309.18 28,168.13 408.05 4,039.01 140.54 92.50

NAS06 12,688.95 1,028.85 11,931.80 120.50 1,088.12

NAS07 994.87 141.72 1,404.00 252.49 1,389.07

NAS08 30,981.63 17,298.18 50,747.70 439.49 3,069.82

NAS0g 15,157.57 1,852.70 17,494.90 286.87 4,829.47

NAS10 101,085.56 17,542.45 77,198.10 748.87 8,269.73

MFLOP90 336.34 61.21 179.30 29.72 265.92

NASKERN 2,146.22 121.40 2,220.50 24.37 263.61

ADM 665.13 125.24 393.70 55.69 1,492.75

ARC2D 1,945.29 275.99 2,234.00 175.52 276.97

BDNA 649.56 363.64 1,174.00 28.86 211.85

DYFESM 814.33 308.01 520.80 51.18

FLO52 715.50 38.58 639.70 17.69

M3G 2,656.14 1,798.54 2,251.50 475.15

10,611.01 37.52 9,622.80 161.39

451.37

162.84

7,057.86

24,547.00

OCEAN 1,819.07 8.99 967.10 67.7_ 2,831.54

CCD 355.66 0.91 3.50 71.47 1,436.67

SPEC77 1,628.45 436.93 1,783.40 196.65 2,749.68

SPICE 42.16 2.12 4.10 29.44 263.90

TRACK 65.90 3.41 6.801 45.62

TRFD 654.4_ 6.02 429.30 41.65

Average 10,663.21 1,774.54 10,554.30 174.27

Minimum 42.16 0.91 3.50 17.69

M aximunl 101,085.56 17,542.45 77,198.10 748.87

415.06

423.42

Standard Dev. 20,894.29 4,741.35 18,184.76 178.78 5,857.15

Total 266t 580.23 44_363.52 263T857.54 4,356.86 100,122.76

Avg Len - I+L _.vg Len - FIo_

56.45 55.6_

36.89

63.92

63.63

45.18

21.71 95.42 61.87 60.5,_

96.86 59.37 14.22 54.3,1

192.07 96.40 63.78 63.7C

67.54

65.40

61.09

6.84

149.13i

2.87

22.48

19.25

3.54

1,281.92

806.65

428.48

160.56

123.18

89.26

72.35

11.82

29.75

63.35

35.32

58.83

25.98

55.82

43.7z

33.90

46.33

7.88

59.95

61.05

7.31

17.02

12.78

13.24

21.38

86.94

312.86

95.57

61.79

93.84

41.09

90.73

89.26

75.90

88.33

43.21

44.27

45.65

17.75

55.63

11.23

12.49

69.56

36.3!

8.6, r

27.21

11.1

55.0, _

29.69

58.79

26.85

53.01

6.55

52.57

50.59

17.98

40.40

5.84

22.96

47.08

18.00

12.14

1.9z

5.07

22.29

4,004.91 220.08 66.61 39.98 32.69

162.84 2.87 11.23 7.31 1.94

24,547.00 1,281.92 96.40 63.92 63.70

20.40

999.57
20.99

5,501.91l 1.665.21 n17 PP

L,h

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

Vector flop

Name Block Memory

NAS01 22,606.33

NAS02 6,893.33

NAS03 13,553.08

NAS04 12,444.51

NAS05 28,216.21

Vector I+L

1,334.66

1,077.45

213.58

10.15

277.54

NAS06 12,686.51 1,047.96

NAS07 9,949.20 141.72

NAS08 30,725.18

NAS09 15,113.17

NAS10 101,064.42

MFLOPg0 330.92

Vector Floal

20,973.37

8,184.40

13,152.50

14,328.40

Jump/Special

176.19

127.75

108.74

79.86

28,094.15 329.84

12,086.20 121.98

1,404.10 252.48

17,137.00 50,744.70 430.40

1,852.84

17,542.45

91.95

NASKERN 2,148.68 121.09

ADM 634.64 64.30

ARC2D 2,095.67

BDNA 632.18

DYFESM

FLO52

MDG

783.05

716.8_

2,656.29

275.96

362.54

290.08

39.02

1,798.54,

11,016.24 37.52

21.33OCEAN 1,688.84

CCD 355.68 1.35

SPEC77 2,207.33 315.57

1.97

3.4"

SPICE 42.06

8.97

TRACK 65.67

TRFD 657.46

1,762.76

17,541.20 278.06

77,199.00 748.48

191.60

2,221.10

33.80

25.69

414.50 52.14

2,249.00 15.56

1,170.20

507.40

639.70

2,251.40

9,634.40

918.10

5.34

1,807.40

4.13

6.77

433.10

10,646.49

4.13

77,199.00

Average 11,171.34

Minimum 42.06 1.35

Maximum 101,064.42 17,542.45

Standard Dev. 20,784.05 4,721.43

44_068.94Total 279,283.55
18,195.26

266,162.16

28.61

49.48

17.56

475.85

281.46

105.52

71.33

175.95

29.20

45.52

40.15

164.06

15.56

748.48

178.95

4,101.601

Scalar FU

2,535.72

3,121.14

10,414.66

9,528.29

3,685.36

109.75

1,388.93

3,027.39

5,871.44

8,248.77

249.42

243.02

1,201.07

223.73

210.40

434.16

161.23

7,068.57

25,549.66

1,609.80

1,436.76i

2,701.78

264.31

411.28

423.19

3,604.79

109.75

25,549.66

5,533.09
90,119.83

Scalar Memory

45.72

385.24

95.12

59.68

102.85

24.28

96.85

190.78

88.68

263.14

50.91

4.87

121.27

1.47

22.15

20.09

3.50

1,281.89

798.00

679.15

160.53

97.49

89.25

72.34

12.60

190.71

1.41

1,281.89

302.49

4.767.79

Vectorizatiol Avg Len-I+L

94.22 56.'7

81.64

71.71

73.48

93.22

99.02

86.86

96.43

84.69

95.48

64.78

94.26

44.75

95.05

89.24

75.83

88.45

43.18

43.72 i
52.33

17.84

59.27

36.93

63.14

63.63

48.95

61.87

14.22

63.80

29.75

63.35

35.61

58.80

22.49

57.27

43.69

33.51

46.34

7.88

60.36

11.17

12.54 13.25

69.79 16.18

69.56

11.17

99.02

27.31

1.738.94

36.2_'

10.4_

11.8;

55.8E

60.5_

54.34

63.72

28.96

58.79

25.80

53.0

7.27

55.89

50.54

18.0z

40.45

5.84

22.4E

50.13

17.89 17.97

18.22 14.62

12.14

39.82

7.88

63.80

41.42

1.94

5.07

22.10

32.75

1.94

63.7.c

19.84 20.83

_R R7 _tn R_

fpp + 4 CPUs

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Name Block Memory Vector I+L Vector Floal Jump/Special Scalar FU

NAS01 22,785.52 1,438.00 20,942.68 262.74 3,091.86

NAS02 7,590.90 1,080.15 8,258.30 24,0.43 3,557.10

10,427.81NAS03 13,553.49 216.09 13,152.50

NAS04 12,445.25 10.65 14,328.80

NAS05 33,989.97 514.76 28,251.60

NAS06 12,721.25 1,054.51 12,087.48

NAS07 991.90 142.03 1,401.22

NAS08 31,304.08 17,408.19 50,779.61

NAS09 15,182.41 1,858.36 17,389.40

NAS10 101,386.34 15,180.61 79,446.31

MFLOPg0 6,387.46 710.17 602.10

NASKERN 2,152.17 122.28 2,220.80

ADM 642.49 65.17 404.80

ARC2D 1,967.68 276.30 2,234.00

BDNA 659.90 363.11 1,170.80

DYFESM 785.29 290.22 507.40

FLO52 721.97 39.40 639.00

M_G 2,656.44 1,798.70 2,251.60

10,662.46 56.10 9,226.22

OCEAN 968.77 14.05 2,770.20

CCO 359.59 1.37 3.54

SPEC77 2,191.80 315.97 1,807.40

111.17

80.43

496.43

161.85

286.37

469.94

359.66

1,238.45

1,306.45

33.20

79.32

25.47

37.82

51.47

20.5

479.34

772.07

176.13

72.63

198.83

SPICE 42.07 1.97 4.13 31.64

TRACK 65.69 3.42 6.77 47.89

TRFD 657.57 9.97 433.10 47.68

Scalar MemoryG Vectorizatiol Avg Len-I+L _vg Len - FIo

136.51 92.83 56.28 55.41

539.26 79.61 35.87 36.z

95.89 71.68 63.0 10.4-

9,533.28 59.7z 73.47 61.79 11.8;

5,030.35 380.96 91.40 39.37 55._:

1,415.53 53.52 94.07 61.28 60.5,

1,470.41 102.53 57.69 14.23 54.3_

3,420.54 198.72 96.05 63.78 63.7;

6,320.82 244.83 83.25 29.68 29.7C

10,158.02 486.91 94.28 54.09 60.57

10,450.27 1,808.81 36.21 11.06 12.42
273.85

1,417.74

327.83

242.82

468.80

166.07

7,093.67

28,698.05

3,291.72

1,455.33

3,100.53

269.24

416.07

479.95

Average 11,314.90 1,718.86 10,812.79 283.52 4,503.11

Minimum 42.07 1.37 3.54 20.51 166.07

Maximum 101,386.34 17,408.19 79,446.31 1,306.45 28,698.05

Standard Dev. 21,115.58 4,434.35 18,501.01 353.63 6,150.35

Total 282,872.47 42r971.56 270_319.76 7T087.92 112,577.66

12.33 93.37 57.55 53.01

169.54 40.03 22.35 6.30

10.68 92.48 55.66 52.78

24.75

35.09

4.43

87.78 43.60 50.48

74.03 33.49 18.0_

1,311.97

1,222.10

1,275.78

165.50

88.00 45.50 40.44

43.01 7.88 5.84

39.39 58.10 21.78

44.17 41.61 36.54

17.71 18.21 17.87

55.51 18.27 14.62158.77

89.29 10.99 12.13 1.94

72.46

70.24
12.39 13.24 5.07

64.80 17.44 22.10

349.22 65.37 37.42 31.90

4.43 10.99 7.88 1.94

1,808.81 96.05 63.78 63.72

499.34 27.82 19.59 21.10

8.730.61 1.6R4PO Q_ 47 7a7 _o

.,,I

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

fpp + 8 CPUs

Nam_

NAS01

NAS02

NAS03

NAS04

NAS05

NAS06

NAS07

NAS08

NAS09

NAS 10

MFLOP90

NASkEHN

ADM

ARC2D

BDNA

DYFESM

FLO52

M33

MG3D

OCEAN

CCD

SPEC77

SPICE

TRACK

I HI-U

Average

Minimum

Maximum

Standard Dev.

Total

Block Memory

22,759.87

7,646.46

13,554.40

12,445.26

34,368.14

12,725.22

991.97

31,998.23

15,183.11

101,486.14i

5,694.92

2,148.28

642.30

1,967.27

664.3

785.26

719.08

2,656.45

10,664.29

968.52

359.59

2,196.83

42.07

65.69

657.57

11,335.65

42.07

101,486.14

21,184.33

283r391.23

Vector I+L Vector Float Scalar FU Scalar Memory
1,438.55

1,081.84

216.09

10.65

514.76

1,055.50

142.03

17,502.29

1,858.36

17,615.24

305.72

122.28

65.17

276.30

363.10

290.2;

39.40

1,432.81

56.10

20,942.67

8,258.30

13,152.44

14,328.70

28,251.59

12,087.30

1,401.22

50,779.61

17,389.40

77,010.41

332.40

2,220.80

404.80

2,234.00

1,170.80

507.40

639.00

2,617.47

9,226.22

14.05 277.00

1.37 3.54

320.17 1,807.40

1.97 4.13

3.42 6.77

9.97 433.10

1,789.49

1.37

17,615.24

4,775.26

44r737.351

10,619.46

3.54

77,010.41

18,178.85

265r486.47

JumplSpeclal

253.4'

224.53

11.32
80.36

504.50

152.55

280.26

480.93

343.04

1 _342.00

678.34

33.91

102.13

28.41

37.87

51.70

20.93

479.34

767.51

176.56

73.09

199.69

30.05

47.40

48.04

257.91

11.32

1,342.00

312.40

6r447.87

3,015.02

3,416.16

10,427.81

9,531.84

5,068.18

128.05

531.10

95.92

59.74

393.26

Vectorizatiol

93.00

80.28

71.88

73.47

91.37

Avg Len - I+L

56.27

35.90

63.01

61.79

39.37

_.vg Len - FIo;

55.4_

36.4

10.4.

11.8;

55.0C

1,343.15 48.16 94.37 61.28 60.5,

1,458.21 102.53 57.93 14.23 54.38

3,516.39 202.13 95.98 63.78 63.72

6,228.11

10,431.59

5,946.89

82.14

1,463.51

361.91

217.51

521.81

1,069.48

14.21

169.66

18.84

26.29

35.16

5.29

1,311.79

1,221.91

1,274.33

165.51

159.86

89.29

72.46=

70.24

320.18

5.29

1,311.79

426.24

8,004.53

243.18

472.20

172.68

7,091.52

28,687.57

83.53

94.10

45.15

97.18

39.06

91.63

87.73

73.90

87.54

43.02

39.40

21.00

17.70

55.5

11.11

12.42

64.76

64.92

11.11

97.18

28.78

1.623.02

3,286.68

1,456.22:

3,106.75

266.08

415.09

29.68

62.75

12.85

57.55

22.35

55.66

43.60

29.70

58.72

15.46

53.01

6.30

52.78

50.48

33.49 18.04

45.50 40.44

6.271 6.79

58.10

41.61

18.21

480.58

4,318.78

82.14

28,687.57

6,048.14
107,969.46

18.22

12.13

13.24

17.44

37.77

21.78

36.54

17.97

14.62

1.94

5.07

22.10;

31.98

6.27i 1.94

63.78 63.72

19.97 20.83

944__R 7QQ R'_

(Ji
OO

1
2
3
4
5
6

7

8

9

10

11

12

13

14

Vector KAP Block
Name Memory Vector I+L

NAS01 22,604.02 1,377.35

NAS02 7,192.86 1,053.85

NAS03 11,472.17 210.99

NAS04 11,526.91 10.15

NAS05 28,328.37 107.52

NAS06 12,689.62 1,047.96

Vector Float Jump/Special F_r__!ar FU Scalar Memor, '/o Vectorizatio

20,926.33 176.42 2,533.67 40.96 94.23

86,290.30 110.04 2,119.91 73.74 97.6;

12,069.70 9_'.90 10,668.81 649.22 67.54

13,279.90 79.04 9,932.78 583.89 70.08

28,005.40 397.89 3,797.60 131.38 92.88

NAS07 994.92 141.72 1,404.10 251.73

NAS08 31,070.22 17,762.85

NAS09 15,157.61 1,852.70

NAS10 101,114.12 17,542.35

MFLOPg0 307.28 60.26

NASP,JEHN 2,146.77 121.49

Avg Len - I+L _,vg Len - FIo_

58.47 55.4_

35.39 35.2_

63.92 47.9l

63.63 49.83

59.72 55.68

12,086.22 123.01 1,056.81 21.92 95.55 61.84 60.54

50,867.40 417.46

17,494.90 288.63

77,198.00 748.95

182.10 27.91

2,220.80 23.94

1,390.13 97.32 59.36 14.22 54.32

2,973.64 191.81 96.53 63.78 63.70

4,698.57 68.47 87.22

8,302.46 265.50 95.46

238.00 58.17 62.91

22.59 4.89 98.87

1,347.50 146.67 43.29

29.75 29.56

63.35 58.9_

ADM 651.73 125.27 406.30 56.14

2,234.00 17.38ARC2D 1,945.44 275.98

34.31 25.35

58.82 53.0"

25.97 5.59

269.50 2.98 93.89 55.81 52.78
1 5 BDNA 649.68 363.77

1 6 DYPb'.'SM 795.27 294.75

1 7 FLO52 719.98 49.35

1 8 _ 2,664.62 1,800.41

1 9 MG3D 10,750.49 1,121.26

20 OCEAN 1,825.24 15.09

21 CCO 355.68 0.92

22 SPEC77 1,634.42 438.49

2 3 SPICE 42.62 1.97

2 4 TRACK 65.70 3.42

25 TRFD 604.85 5.56

1,174.20 29.0(212.97 22.62 89.21 43.74 50.59

509.40 51.83 457.55 21.79 75.07 33.64 17.78

640.70 14.98 148.18 2.62 89.48 42.89 40.41
2,262.20 475.79 7,069.77

9,949.80 192.52 26,922.97

973.20 67.60 2,796.03

1,280.60 43.25 7.82 5.71

1,009.14 43.69 57.23 23.32

428.44 46.08 62.20 47.16i
3.54 71.47 1,438.41 160.56

1,789.30 203.62 3,169.95 111.07

4.13 27.40 257.98 89.26

17.74 7.41 18.00

52.57 11.15 11.46

11.51 12.11 1.94

6.43 45.3; 415.45 72.52 12.41 13.29 5.14

397.20 42.04 391.70 11.33 69.36 19.76 20.62

Average 10,692.42 1,831.42 13,695.02 160.90 3,754.14 229.41

Minimum 42.62 0.92 3.54 14.98 22.59 2.62

Maximum 101,114.121 17,762.85 86,290.30 748.95 26,922.97 1,280.60

68.23 39.24 34.78

11.51 7.41 1.94

98.87 63.92 63.7(
Standard Dev. 20,908.84 4,796.00 23,649.49 185.29 5,873.42

Total 267r310.60 45r785.43 342r375.55 4,038.011 92,632.93
333.83 28.07 21.27 20.44

5,546.87 1.705.80 1_O00 _ _on la

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

iKAP + 4 CPUs

Name

NAS01

NAS02

NAS03

NAS04

NAS05

NAS06

NAS07

NAS08

Block Memory

23,405.73

7,407.97

11,472.62

11,526.94

35,922.97

12,720.63

994.87

32,810.15

Vector I+L

1,510.80

1,078.27

211.85

10.16

432.74

1,048.14

141.72

18,492.00

!NAS09 15,661.48 1,857.85

NAS10 101,368.45 17,562.38

MFLOPg0 307.66 61.52

NASK_P,N 2,125.19

763.65ADM

124.10

136.45

Vector Float

20,788.44

8,730.40

12,069.71

13,279.86

28,057.64

12,086.37

1,404.08

51,266.90

17,494.10

77,197.21

182.33

2,197.90

394.40

ARC2D 1,946.14 276.07 2,234.00

BDNA 650.51 364.15 1,174.20

DYFEb'M 801.05 295.70 509.40

FLO52

IVEX3

MG3O

_CX3EAN

CCD

SPEC77

SPICE

TRACK

49.65725.70

1,798.55

1,140.17

19.77

0.92

468.28

2.36

3.43

5.6"

1,883.71

0.92

1,757.65

47r092.63

10,760.54

1,840.21

357.62

1,707.56

42.8

65.58

605.11

11,109.95i

42.81

TRFD

Average
Minimum

277,748.80

Maximum 101,368.45 18,492.00

Standard Dev. 21,377.84 4,894.82

Total

640.71

2,251.55

9,949.84

981.50

3.5z

1,797.18

4.13

6.43

397.20

10,603.96

3.54

77,197.21

18,221.81

2651099.02:

Jump/Special

378.79

214.99

99.43

79.56

2,218.41

177.75

276.88

719.34

527.59

1,089.18

29.32

66.48

93.90

59.84

19.44

421.49

454.37

78.79

73.51

256.61

28.39

46.77

42.47

301.18

19.44

2,218.41

475.98

7,529.44

Scalar FU Scalar Memory

4,294.02

2,584.83

10,681.90

9,960.53

12,250.48

1,356.27

1,439.90

4,581.13

5,926.96

9,648.33

246.56

490.55

1,622.09

427.76

235.91

483.09

167.24

5,866.33

27,520.64

2,838.50

1,458.07

3,402.62

260.40

418.20

395.02

4,342.29

167.24

27,520.64

6,081.50

108,557.33

362.00

153.87

649.54

583.91

986.29

44.40

97.28

202.78

255.90

352.35

58.82

40.og

209.26

19.46

23.91

26.71

6.01

1,115.07

1,036.86

% Vectorizatiol

90.08

85.36

67.51

70.02

80.65

94.25

58.34

94.91

83.92

94.65

62.23

88.16

40.20

90.15

88.08

73.82

88.02

43.96

42.96

432.26 45.90

165.44 17.58

124.67

89.38

72.59

11.46

284.81

6.01

1,115.07

336.45

7,120.31

51.22

11.53

12.3"

69.18

Avg Len -I+L

56.30

34.85

63.83

63.5,4

22.93

61.67

14.22

46.45

29.68

63.07

33.93

55.67

24.64

55.76

43.70

33.52

42.70

7.88

57.20

57.89

7.41

,vg Len - FIo

53.5(

35.3;

47.9(_

49.8:

55.69

60.5,

54.34

59.10

29.53

56.82

25.30

48.70

6.56

52.78

50.59

17.78

40.41

5.84

23.32

47.48

18.00

11.57 11.45

13.94 1.9z

13.29 5.14

19.72 20.62

65.80 37.41 35.1#

11.53 7.41 1.94

94.91

26.34

63.83 60.54

1,644.99

19.90 19.82

935.36 878.54

O_
O

1

2

3

4

5

8

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

KAP + 8 CPUs

Name Block Memory Vector I+L Vector Float Jump/Special Scalar FU Scalar Memor

NAS01 23,424.27 1,500.71 20,788.45 446.20 4,606.31 403.06
Vectorizatio, Avq Len - I+L

89.34 56.37

NAS02 7,508.13 1,079.31 8,732.00 181.21 2,459.69 139.56 86.17 34.85

NAS03 11,472.70 211.85 12,069.71 100.38 10,683.18 649.58 67.51 63.83

NAS04 11,526.93 10.16 13,279.90 79.36 9,960.36 583.91 70.02 63.54

NAS05 35,728.36 432.67 28,057.57 1,966.44 11,098.02 890.48 82.15 22.93

NAS06 12,718.37 1,047.58 12,086.28 211.92 1,489.88

NAS07 994.87' 141.72 1,404.08 279.47 1,445.11

NAS08 32,091.96 18,522.38 51,266.94 742.57 4,601.10

NAS09 15,706.60 1,857.85 17,494.20 468.83 5,620.43

52.61

_,vg Len - FIo:

53.5(

35.3

47.9(

NAS10 101,369.08 17,562.38 77,197.22 1,014.14 9,531.94

49.8'

55.6 r

93.64 61.67

97.29 58.24 14.22 54.3t

201.20 94.84 46.48 59.1(

233.03 84.72 29.68 29.5 _

357.04 94.73 63.07

MFLOP90 314.31 61.53 182.34 29.88 248.25 59.00 62.34 33.93

NASKERN 2,149.10 124.10 2,197.90 51.74 436.23 35.54 89.52 55.67

213.08 41.92 24.64ADM 893.13 136.45 394.40 100.83 1,658.71

:ARC2D 1,947.62 276.07 2,234.00 34.84 384.08 16.10

BDNA 652.00 364.15 1,174.20 38.19 237.52 23.52

DYFESM 812.57 295.70 509.40 55.70 470.72 25.66

FLO52 727.16 49.65 640.711 22.86 180.16 7.10

MDG 2,664.48 1,800.14 2,262.10 477.11 7,074.71 1,283.10

91.11 55.76

87.98 43.70

74.56 33.52

87.09 42.71;

MG3D 10,760.45 1,140.17 9,949.84 1,476.87 29,569.47 1,037.89

43.23 7.82

40.51 57.20

45.90 57.89

17.60 7.41

51.11i 11.56

11.54 13.94

12.15 13.29

69.10 19.72

65.88 37.42

11.54 7.41

OCEAN 1,837.76 19.77 981.50 77.09 2,837.16 432.18

QCD 357.62 0.92 3.54 72.71 1,456.49 165.44

SPEC77 1,708.61 466.22 1,797.18 262.02 3,412.95 124.27

SPICE 42.82 2.36 4.13 28.24 260.18 89.41

TRACK 65.57 3.43 6.43 49.29 423.26 72.60

TRFD 605.13 5.61 397.20 43.19 395.92 11.54

Average 11,123.18 1,884.51 10,604.45 332.44 4,421.67 288.17

Minimum 42.82 0.92 3.54 22.86 180.16 7.10

Maximum 101,369.08 18,522.38 77,197.22! 1,966.44 29,569.47

60.5'

Standard Dev. 21,319.57 4,899.17 18,221.60 491.12 6,367.26

Total 278r 079.62 477112.86 265rl 11.22 8,311.08 110,541.83

56.8;

25.3¢

48.7C

6.5E

52.78

50.59

17.78

40.41

5.71

23.32

47.48

18.00

11.45

1.94

5.14

20.62

35.14J

1.94

1,283.10 94.84 63.83 60.54

348.48 26.50 19.91 19.82
I

7,204.191 1,647.04 935.40 878.42

VectorKAP+ fpp

Name

NAS01

NAS02

NAS03

NAS04

Block Memory Vector I+L Vector Float Jump/Special Scalar FU Scalar Memor _ _, Vectorizatior Avg Len - I+L _.vg Len - FIo:

22,607.38 1,377.35 20,927.91 181.33 2,541.11 44.24 94.20 58.47 55.4:

7,258.07 1,079.34 8,651.40 107.30 2,081.97 61.43 88.30 35.46 35.22

13,524.50 213.58 13,152.50 51.76 6,495.86 90.23 80.20 63.14 48.92

12,444.42 10.15 14,328.40 28.25 5,882.73 59.60 81.77 63.63 50.65
5

6

7

NAS05

NAS06

NAS07

28,370.82 388.57 28,086.23 333.38 3,713.42 103.47 93.20 53.19 55.72

12,464.33 1,047.98

994.92 141.72
12,086.22 122.97 1,055.15 21.91 95.52 61.87 60.55

1,404.10 251.73 1,390.13 97.32 59.36 14.22 54.32

O_

8

9

10

11

12

13

14

15

16

17

18

19

20

21

NAS08 30,814.16 17,605.66

NAS09 15,088.68 1,745.32

NAS10 100,761.141 17,501.18

MFLOP90 326.44 81.40

NASKERN 2,071.35 121.08

ADM 647.44 64.33

ARC2D 2,093.39 275.97

BDNA 632.24 362.62

DYFESM 792.70 290.95

FLO52 721.33 49.87

EEX_ 2,664.67 1,800.41

MG3D 11,115.20 1,121.26

OCEAN 1,645.15 29.54

CCD 335.67 1.36

50,864.40 408.74 2,934.42 191.01i 96.56 63.80 63.72

17,541.20 258.69 4,481.34 66.53 87.73 33.94 30.16

77,025.90 746.70 8,262.34 262.53 95.47 63.35 58.79

188.78 36.78 250.09 52.26 63.76 36.90 25.27

2,221.00 19.44 221.96 5.17 94.71 58.80 53.01

442.30 52.06 1,188.40 117.45 45.941 22.47 6.23

2,249.00i 15.69 224.62 1.56 95.0; 57.26 55.89

1,170.40 28.88: 213.82 22.48 89.09 43.68 50.54

506.40 52.4z 465.67i 23.79 74.58 33.53 17.73

640.70 14.88 146.46 2.59 89.60 42.55 40.45

2,262.20 476.53 7,069.03 1,280.60 43.25 7.82 5.71

9,961.50 305.63 26,731.65 1,110.81 44.09 57.24 22.76

787.90 102.59 2,216.14 683.78 45.06 53.25i 48.49

3.54 71.35 1,437.06 160.56 16.95 18.04 17.98

2 2 SPEC77 2,119.98 304.49 1,767.00 174.86 2,478.41 113.79 60.24 17.84 15.03

23 SPICE 42.63 1.97 4.13 27.40

2 4 TRACK 65.41 3.4; 6.43 45.23

25 TRFD 607.87 8.51 400.90 40.54

257.98 89.26 11.51 12.12 1.94

411.48 72.52 12.45 13.29 5.14

391.20 12.11 69.62 15.36 20.46

Average 10,808.40 1,825.12 10,667.22

!Minimum 42.63 1.36 3.54
158.21! 3,301.70 189.88 69.13 40.05 36.00

14.88 146.46 1.56 11.51 7.82 1.9_

Maximum 100,761.14 17,605.66 77,025.90

Standard Dev. 20,838.01 4,766.68 18,179.25

Total 270r209.90 45r628.05 266r680.44

746.70 26,731.65 1,280.60 96.56 63.80 63.72

180.62 5,434.37 332.77 27.68 19.93 20.44

3,955.15 82,542.44 4,747.001 1,728.19 1.001.22 900.11 _

O_
t,o

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

IKAP + fpp+ 4 CPUs

Name Block Memory

NAS01 23,329.36

Vector I+L

1,507.20

Vector Float

20,788.44

NAS02 6,986.70 1,085.74 8,277.90

NAS03 13,521.51 216.09

NAS04 12,445.17 10.65

4.20NAS05 35,776.44

13,152.50

14,328.80

28,057.70

NAS06 12,722.42 1,049.90 12,087.49

NAS07 991.92 142.10 1,401.22

NAS08 32,319.75 18,474.70 51,269.14

NAS09 15,594.18 1,858.01 17,494.20

NAS10 101,458.67 17,604.68 77,038.66

MFLOP90 332.56 83.55 189.54

NASkERN 2,130.38 124.10 2,198.10

ADM 885.18 136.45 459.90

ARC2D 1,946.97 276.11 2,234.10

BDNA 660.43 363.18: 1,170.90

DYFESM 800.16 295.83 509.40

FLO52 723.98 49.65 640.04

2,664.86 1,800.54 2,262.30

MG3D 10,764.47 1,140.20 9,552.92

OCEAN 1,243.23

CCD 357.64

32.91

1.36

439.93

335.40

SPEC77 1,707.56 466.09 1,797.18

SPICE 42.81 2.36 4.13

TRACK 65.31 3.43 6.43

TRF-D 608.03 9.89 400.90

Average 11,203.19 1,869.56 10,643.89

Minimum 42.81 1.36 4.13

Maximum 101,458.67 18,474.70 77,038.66

Standard Dev. 21,366.03 4,903.36 18,215.94
Total 280_079.70 46r738.91

Jump/Special

385.72

Scalar FU

4,329.26

Scalar Memory_

366.22

Vectorizatio=

89.98

263.38 4,036.32 552.99 77.11

55.83 6,519.20 94.58 80.13

Avg Len -I+L

56.34

_,v.q Len - FIo"

53.5(

34.40 35.2f

63.01 48.9;

28.84 5,886.17 59.66 81.76 61.79

1,954.16 11,101.50 893.85 82.07 22.90

175.43 1,473.27 58.79 93.81 61.46

273.27 1,446.23 102.95 58.18 14.23

730.86 4,622.55 203.62 94.84 46.41

456.42 5,577.34 200.23 84.86 29.68

1,635.97 11,162.19 507.94 93.65 62.60

50.6_

55.6_

60.5,1

54.3_

59.1(;

29.54

56.76

40.15 276.33 58.12 61.79 36.34

45.01 395.05 32.70 90.40 55.67 48.70

93.02 1,570.83 192.45 44.39 24.64 7.05

34.28 390.45 15.52 91.01 55.76 52.78

37.42 241.67 26.10 87.79 43.61

63.12 510.47 38.38 72.40 33.51

19.68 166.78 5.89 88.02 42.70

479.12 7,097.44 1,307.19 43.09 7.82

25.18

50.49

1,074.13 30,528.43 1,531.28 39.31

161.88 2,989.18 1,104.47 28.74

73.18 1,456.42 165.51 29.06

17.78

40.40

5.71

57.19 22.13

52.04 43.79

18.19

252.31 3,391.45 123.48 51.32 11.56

28.34 260.29 89.39 11.54 13.95

46.89 414.65 72.59 12.34 13.29

48.69 478.24 70.22 63.05 16.05

338.28 4,252.87 314.96 66.02 37.41

19.68 166.78 5.89 11.54 7.82

1,954.16 30,528.43 1,531.28 94.84

508.57 6,367.78 433.16 26.58

63.01

19.08

935.14266r097-22 8r457.10 106,321.71 7,874.12 1.650.61

18.00

11.45

1.94

5.14

20.46

35.01

1.9'_

60.54

19.80

875.34

O_

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

KAP + fpp + 8 CPUs

Name Block Memory

NAS01 23,421.85

NAS02 7,369.05

Vector I+L Vector Float Jump/Special

1,500.11 20,788.44 509.40

1,087.16 8,280.00 250.87

Scalar FU

4,849.46

3,957.74

NAS03 13,521.71 216.09 13,152.53 56.42 6,520.17

NAS04 12,445.20 10.65 14,328.80 29.02 5,887.58

NAS05 35,517.46 434.14 28,057.63 2,236.09 12,214.47

NAS06 12,724.11 1,050.47 12,087.52 236.85 1,555.55

NAS07 991.92 142.10 1,401.22 276.96 1,454.06

NAS08 32,663.93 18,454.50 51,269.14 1,034.02 5,226.76

NAS09 15,662.36 1,858.00 17,493.30 458.28 5,571.90

NAS10 101,448.59 17,616.22 76,998.09 1,428.20 10,839.08

MFLOPg0 348.80 86.99 171.84 45.17 296.39

Scalar Memory_ Vectorizatio_ Avg Len - I+L

434.56 88.75 56.38

535.16 77.92 34.40

94.70 80.12 63.0"

59.66 81.76 61.79

986.02 80.57 22.90

54.78 93.33 61.46

102.96 58.03 14.23

205.53 94.06 46.39

213.92 84.87 29.68

531.63 93.87 62.60

60.35 60.19 32.97

NASKERN 2,137.33 124.10 2,198.10 46.03 401.40 33.14

ADM 807.80 136.45 459.90 86.05 1,530.43 188.75

ARC2D 1,947.09 276.11 2,234.10 29.73 337.38 10.97

BDNA 665.19 363.19 1,170.90 37.70 241.79 24.81

DYFESM 809.52 295.83 509.40 57.39 499.28 38.42

FLO52 730.77 49.65 640.04 21.24 172.83 6.44

IVDG 2,664.87 1,800.54 2,262.30 479.07 7,097.26 1,307.19

MC.-.-.-.-.-.-.-._D 10,764.37 1,140.20 9,552.92 1,326.42 31,025.19 1,531.16

90.27 55.67

CX3EAN 1,244.67 32.911 439.93 162.52

CCD 357.65 1.36 3.54 72.95

SPEC77 1,716.88 465.24 1,797.18 252.87

43.75 24.64

92.18 55.76

87.85 43.61 =

73.07 33.51

87.63 42.70

43.10 7.82

38.77 57.19

_vg Len - FIo:

53.51

35.2(

48.9:

50.6!

55.6 _,

60.51

54.3_ r

59.1 (

24.7 _,

48.7C

7.05

52.78

50.49

17.78

40.40

5.71

22.13

2,990.64 1,104.55 28.74 52.04 43.79

1,455.98 165.51 17.63 18.19 18.00

3,391.75 123.07 51.37 11.55 11.45

11.55; 13.95SPICE 42.87 2.36 4.13 28.28 260.21 89.39

12.34 13.29TRACK 65.33 3.43 6.43 46.85 414.58 72.60
1.94

TRFD 608.20 9.89 400.90 48.45 477.76 70.22

Average 11,227.10 1,886.31 10,628.33 370.27 4,346.79 321.82

Minimum 42.87 1.36 3.54 21.24 172.83 6.44

Maximum 101,448.59 18,454.50 76,998.09 2,236.09 31,025.19 1,531.16

5.14

63.08 16.05: 20.46

65.39 37.27

11.55 7.82

94.06 63.01

Standard Dev. 21,366.43 4,895.95 18,218.12 557.46 6,495.46 439.30 27.31
Total 280r677.50 47rl 57.681 265r708.28 9r256.83 108,669.64 8,045.49 1,634.79

19.11

931.78

34.99

1.94

60.54

19.81

874.86

Appendix E -- Effective Parallel Fraction

This appendix gives the effective parallel fraction for each of the

parallel program executions. The formula to compute the parallel

fraction is obtained by solving Amdahrs Law, giving

%p = 100 1

where Tn and Tv are the elapsed times of the n-CPU and vector

executions, respectively.

64

o_

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
2O
21
22
23
24
25

Benchmark fpp + 4
Name %p

NAS01 63.11
NAS02 28.90
NAS03 4.95
NAS04 5.29
NAS05 10.73
NAS06 87.89
NAS07 4.03
NAS08 81.35
NAS09 75.81
NAS10 78.89
MFLOP90 5.92
NASKERN 41.99
ADM -34.96
ARC2D 75.64
BDNA 10.43
DYFESM 12.83
FLO52 76.47
MDG 20.16
MG3D 9.86
OCEAN -72.98
CCD -0.25
SPEC77 -0.20
SPICE -21.77

TRACK -9.40
TRFD

Average
Minimum -72.98

fpp + 8

%p
59.95

KAP + 4

%p
32.41

16.03 -1.97
5.96 1.45
5.27

11.61
87.84

3.39
84.11
74.82
75.63

8.17
40.45

-21.55
73.67

2.55
14.29
68.28

0.84
8.84

-60.59
-1.25
-0.72

-19.66
-7.65

2.89
-10.08
86.92

2.42
81.37
65.96
60.59

-3.58
58.57
.:0.14
80.16

7.75
-0.30
75.44
14.56

5.53
13.10
2.22

25.47
-11.26

4.61

KAP + 8

%p
33.81
-1.37
2.67
2.37

-22.73

87.00
1.37

83.27,
63.38
57.7"
-0.64
52.35
-5.67
67.04

5.67
2.76

67.11
2.48
5.39

11.72

0.93
25.16
-0.95
4.84

KAP + fpp + 4
%p

31.75
-8.99

KAP + fpp + 8
%p

33.6E
-4.8(;

6.06 7.3(;
7.37 6.6(

-15.19 -25.89
88.33

0.86
85.78
64.39
78.79

3.42
64.83

-14.71
77.91

5.52

23.82
69.22
20.66
-2.06

88.05
0.44

84.66
61.45
75.93
-0.46
56.32

-15.07
76.11

2.44
19.70
55.87
0.21

-0.93
-34.28 -27.38

-1.73 -2.30
12.53 14.04

2.19
3.24_

-67.77 -60.25 0.67 -5.01 -81.06

19.48 18.80 23.79 21.63 19.55
-60.59

Maximum 87.89
Standard Dev. 44.51
Total 336.47

87.84
-11.26;
86.92

-22.73; -81.06
87.00 88.33
32.18 42.04

504.42 398.33

33.17
575.38

41.63
346.29

-0.35
1.95

-70.36

17.49
-70.36
88.05
39.89

348.20

